Synthetic corkscrew peptide kills antibiotic-resistant Gram-negative bacteria

January 24, 2013, University of Texas M. D. Anderson Cancer Center

An engineered peptide provides a new prototype for killing an entire category of resistant bacteria by shredding and dissolving their double-layered membranes, which are thought to protect those microbes from antibiotics.

The was effective in lab experiments against antibiotic-resistant Gram-negative , which cause a variety of difficult-to-treat, potentially lethal infections such as pneumonia and sepsis.

The team led by scientists at The University of Texas MD Anderson Cancer Center reported its findings online in advance of print this week at the .

"The antibiotic pipeline against multidrug-resistant Gram-negative problem pathogens is a major unmet need in contemporary medicine; as such, our new antimicrobial agent holds immediate promise," said co-senior author Wadih Arap, M.D., professor in MD Anderson's Department of Genitourinary and the David H. Koch Center.

Arap, Renata Pasqualini, Ph.D., also a co-senior author, professor in genitourinary medical oncology and the Koch center, and colleagues have previously constructed peptide combinations that are in development against cancer and white fat cells.

"The prototype introduced here as an antibiotic candidate has a unique mechanism of action and translational applications readily identified," Pasqualini said.

Gram-negative bacteria that are highly resistant to existing treatments include E. coli, Acinetobacter baumanii, Pseudomonas aeruginosa, and kebsiella pneumonia. These infections are often present in health care settings and most threatening to people with .

The spiral peptide called KLAKLAKKLAKLAK acts against bacteria by puncturing their membranes and has only low toxicity toward . These , however, are subject to routine destruction by host enzymes or those generated by the microbe. Combating that effect by increasing the dose heightens both toxicity to other cells and cost.

D- KLAKLAKKLAKLAK destroys microbes, biofilms

Arap, Pasqualini and colleagues engineered a version of KLAKLAKKLAKLAK to use in their combination therapies but had not tested the peptide alone as an antibiotic.

The peptide is made of L-amino acids, the building blocks of life, which makes them vulnerable to destruction. The researchers synthesized a peptidomimetic – a version of the peptide using D-amino acids with a reversed peptide sequence, making it more durable.

In a series of lab experiments, the researchers found that D-KLAKLAKKLAKLAK:

  • Kills a variety of strains of E. coli, A. baumanii and P. aeruginosa, including multi-drug resistant strains.
  • Works against Gram-negative bacteria at all phases of growth, including dormant cells that are prone to become resistant.
  • Causes dose-dependent damage to the bacterial membrane resulting in its dissipation and cell death.
  • Specifically disrupts lipids found in Gram-negative bacteria membranes while not affecting membranes in eukaryotic cells – cells with the nucleus and other structures enclosed in separate membranes found in mammals and other non-microbial life.
  • Works in combination with the antibiotic piperacillin at lower doses to kill bacteria.
  • Eliminates biofilms, layers of combinations of microbes that adhere to surfaces and provide an ideal setting for bacterial growth.
Next step: Animal model experiments

Arap and Pasqualini note that developing D- KLAKLAKKLAKLAK as a drug will next require experiments in animal models of sepsis and other infections to further gauge the peptide's effectiveness and side effects.

In their cancer and anti-obesity research, the D-peptide is used with targeting agents to hit specific cells. Large preclinical studies in mice, rats and monkeys showed low toxicity at treatment-level concentrations. Their cancer drug in a first-in-human phase I clinical trial revealed side effects that were predictable, dose-dependent and reversible. Even so, toxicity may differ when it's used against bacterial infections.

The peptide was not effective against Gram-positive bacteria, which have thicker cell walls but are generally more vulnerable to antibiotics and the immune system than are Gram-negative bacteria. Gram-positive bacteria include those that cause anthrax, tuberculosis, strep throat and such treatment-resistant infections as Staphylococcus aureus.

, which have thinner membranes but are generally more resistant to antibiotics or immune system attack, also include those that cause typhoid fever, cholera, gonorrhea, syphilis and lyme disease.

Explore further: Drug-resistant bacteria top agenda of medical convention

Related Stories

Drug-resistant bacteria top agenda of medical convention

September 18, 2011
The emergence of bacteria resistant to antibiotics and efforts by scientists trying to cope with the problem top the agenda at a medical convention under way here this weekend.

Researchers suggest novel prevention of recurrent ear infections

October 30, 2012
Eliminating bacteria's DNA and boosting antimicrobial proteins that already exist may help prevent middle ear infections from reoccurring. These are the findings from a Nationwide Children's Hospital study that examined how ...

Researchers find peptide produced by giant panda fights fungi and bacteria

January 3, 2013
(Medical Xpress)—Researchers working at the Life Sciences College of Nanjing Agricultural University in China have found that giant pandas naturally produce a peptide that can kill fungi and bacteria. In their paper published ...

Recommended for you

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

Research discovers possible link between Crohn's and Parkinson's in Jewish population

January 11, 2018
Mount Sinai Researchers have just discovered that patients in the Ashkenazi Jewish population with Crohn's disease (a chronic inflammatory of the digestive system) are more likely to carry the LRRK2 gene mutation. This gene ...

Scientists use gene expression to understand how astrocytes change with age

January 11, 2018
Potentially explaining why even healthy brains don't function well with age, Salk researchers have discovered that genes that are switched on early in brain development to sever connections between neurons as the brain fine-tunes, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.