Uncovering the secrets of 3D vision: How glossy objects can fool the human brain

January 22, 2013

(Medical Xpress)—It's a familiar sight at the fairground: rows of people gaping at curvy mirrors as they watch their faces and bodies distort. But while mirrored surfaces may be fun to look at, new findings by researchers from the Universities of Birmingham, Cambridge and Giessen, suggest they pose a particular challenge for the human brain in processing images for 3D vision.

The researchers have taken advantage of the unusual visual behaviour of curved mirrors to study stereopsis: the process by which the brain combines images from the two eyes to see in 3D.

The work, published online today in the (PNAS), used and perceptual measurements to show that people often see the 'wrong' shape for glossy objects (like chrome bumpers or brass door knobs) because of the way the brain employs 'quality control' mechanisms when it views the world with two eyes. This reveals how the brain checks the 'usefulness' of the signals it receives from the senses, explaining why we sometimes misperceive shapes and distances. It also has some connections with the design of .

'We often think that the 3D information we get from having two eyes provides the gold standard for seeing in depth; but glossy objects pose a difficult challenge to the brain because the stereoscopic information often indicates depths that don't match the physical shape of the object' explains Dr Andrew Welchman, a Wellcome Trust Senior Research Fellow at the University of Birmingham. 'We found that the brain is sometimes 'fooled' into seeing the wrong 3D shape, but this depends on statistical properties of the that indicate how 'useful' the information is,' he adds.

To carry out the project, the team developed mathematical models that calculate the pattern of reflections seen when viewing glossy objects, and measured the perceived 3D appearance of these shapes.

'When a curved mirrored object reflects its surroundings, the reflections appear at a different depth than the glossy surface itself. This makes it difficult for the brain to work out the true 3D distance to the surface' explains Dr Alex Muryy, a research fellow at Birmingham who conducted the analyses. 'We found that even simple objects can produce very complex depth profiles, and reflections can behave very differently from normal stereoscopic information.' Understanding these differences provided the key to reveal the generalised way in which the brain analyses incoming information to judge the circumstances in which information should be trusted.

'Stereoscopic information is often highly informative, but in certain circumstances it can tell us the wrong thing or be unreliable. The challenge is therefore to understand how the brain knows when it should or should not trust this 3D information,' says Professor Roland Fleming, ,Giessen University in Germany. 'We have uncovered signals that are likely to be important in guiding the brain's use of the information by studying glossy objects. In particular, we can understand people's misperceptions because in these circumstances 3D reflections fall within the normal range of values, meaning that the takes the depth signals at face value.'

Professor Andrew Blake, team member from Microsoft Research Cambridge, adds: 'Understanding human stereo vision is fascinating in its own right and also because of the connections with stereo vision systems used in Robotics today.'

Explore further: How the brain computes 3D structures

More information: This research is published online, 21 January 2013, in the journal Proceedings of the National Academy of Sciences of the United States, 'Specular reflections and the estimation of shape from binocular disparity' by Muryy, Welchman, Blake & Fleming.

Related Stories

How the brain computes 3D structures

January 11, 2012
The incredible ability of our brain to create a three-dimensional (3D) representation from an object's two-dimensional projection on the retina is something that we may take for granted, but the process is not well understood ...

New insights into how the brain reconstructs the third dimension

December 7, 2011
A new visual illusion has shed light on a long-standing mystery about how the brain works out the 3-D shapes of objects.

Paper examines the illusion of the scintillating grid

December 19, 2012
(Medical Xpress)—The fascinating but deeply weird illusion of the scintillating grid, where the grid appears to sparkle, has been shown to be more sparkly when you view it with both eyes rather than one eye.

Owl study expands understanding of human stereovision

July 11, 2011
Using owls as a model, a new research study reveals the advantage of stereopsis, commonly referred to as stereovision, is its ability to discriminate between objects and background; not in perceiving absolute depth. The findings ...

Recommended for you

Scientists discover powerful potential pain reliever

August 16, 2017
A team of scientists led by chemists Stephen Martin and James Sahn at The University of Texas at Austin have discovered what they say is a powerful pain reliever that acts on a previously unknown pain pathway. The synthetic ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

Researchers discover fundamental pathology behind ALS

August 16, 2017
A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal ...

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...

Navigation and spatial memory—new brain region identified to be involved

August 16, 2017
Navigation in mammals including humans and rodents depends on specialized neural networks that encode the animal's location and trajectory in the environment, serving essentially as a GPS, findings that led to the 2014 Nobel ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.