Wild animals may contribute to the resurgence of African sleeping sickness

January 17, 2013

Wild animals may be a key contributor to the continuing spread of African sleeping sickness, new research published in PLOS Computational Biology shows. The West African form of the disease, also known as Gambiense Human African trypanosomiasis, affects around 10,000 people in Africa every year and is deadly if left untreated.

The disease is caused by a brain-invading parasite transmitted by bites of the , and gets its name from the of drowsiness and altered sleeping patterns that affect late-stage patients, along with other physical and neurological manifestations including and hallucinations that eventually lead to coma and death.

Despite numerous previous studies showing that animals can be infected with the parasite, the prevailing view has been that the disease persisted in its traditional areas almost only because of human-to-human transmission. A new study, from an international team of researchers led by the London School of Hygiene & Tropical Medicine, challenges this assumption by using a mathematical model to show that the disease not only can persist in an area even when there are no human cases, but probably requires the presence of infected wild animals to maintain the chain of transmission. The authors' model was based on data collected in active screening campaigns between November 1998 and February 1999 in the Bipindi area of Cameroon. One of the species in the data group was the White-eyelid mangabey, pictured below.

The research provides an attractive explanation for why sleeping sickness survives in places which have undergone intensive efforts to find and treat infected people in the community. It suggests that efforts to eliminate the disease must factor in the wild animal populations.

"This research suggests that targeting human populations alone, the main current control strategy, might not be enough to control the disease," says Sebastian Funk, the lead author of the study. "Maintenance of transmission in wild animal populations could explain the reappearance of sleeping sickness in humans after years without cases."

Explore further: Parasite sheds light on sleeping sickness

More information: Funk S, Nishiura H, Heesterbeek H, Edmunds WJ, Checchi F (2013) Identifying Transmission Cycles at the Human-Animal Interface: The Role of Animal Reservoirs in Maintaining Gambiense Human African Trypanosomiasis. PLoS Comput Biol 9(1): e1002855. doi:10.1371/journal.pcbi.1002855

Related Stories

Parasite sheds light on sleeping sickness

April 21, 2011
Fresh insight into the survival strategy of the sleeping sickness parasite could help inform treatments for the disease.

Fighting sleep: Discovery may lead to new treatments for deadly sleeping sickness

January 17, 2013
While its common name may make it sound almost whimsical, sleeping sickness, or African trypanosomiasis, is in reality a potentially fatal parasitic infection that has ravaged populations in sub-Saharan Africa for decades, ...

Gene clue to drug resistance in African sleeping sickness

June 19, 2012
(Medical Xpress) -- Researchers have identified a gene that controls susceptibility to drug treatment in Trypanosoma brucei, the parasite responsible for African sleeping sickness.

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.