How chronic pain disrupts short term memory

February 7, 2013, University of Porto
How chronic pain disrupts short term memory
Human brain (hypothalamus=red, amygdala=green, hippocampus/fornix=blue, pons=gold, pituitary gland=pink. Credit: BrianMSweis

A group of Portuguese researchers from IBMC and FMUP at the University of Porto has found the reason why patients with chronic pain often suffer from impaired short –term memory. The study, to be published in the Journal of Neuroscience, shows how persistent pain disrupts the flow of information between two brain regions crucial to retain temporary memories.

Chronic pain suffers often complain of 's problems. The why this occurs are however not understood. Recent studies in animals showed that pain can disturb several cognitive processes as well as change the brain pathways for how we think and feel. Of the many cognitive disturbances observed the most important include problems in , , attention and even emotional and non-emotional decisions.

In the new  article the team of researchers from the University of Porto led by Vasco Gallardo describes in a rat model of neuropathic pain how a neuronal circuit crucial for the processing of short-term memory is affected by pain. The circuit, established between the and the hippocampus, is essential for encoding and retaining temporary memories on spatial information. The researchers used multi-electrodes implanted in the brain to record neuronal activity during a behaviour dependent of spatial memory - the animals were trained in a maze where they had to choose between two alternative paths and then asked to recall their chosen path.

The results show that after a painful injury there is a significant reduction in the amount of information that passes through the circuit. This could mean a loss of ability to process information on spatial localization memory, or that those regions critical to memory are now "overwhelmed" by the disrupting the flow of information for memory.

According to Vasco Gallardo, the team " has  already demonstrated that peripheral nerve injury induces an instability in the spatial coding capacity of hippocampus neurons ", where is seen "a clear reduction in their capacity to encode information on the location of the animal."

 So to the author "this new work contributes to the demonstration that chronic pain induces alterations in the function of brain circuits that are not directly connected to tactile or painful processes".  So as a result of chronic pain it is seen that "are also affected neuronal circuits linked to the processing of memories and emotions, what might mean a need for larger and more integrative strategies in the treatment of painful pathologies", says the researcher.

Explore further: Neuron memory key to taming chronic pain

More information: Cardoso-Cruz, H., Lima, D. and Galhardo, V. (2012). Impaired spatial memory performance in a rat model of neuropathic pain is associated with reduced hippocampal-prefrontal cortex connectivity. Journal of Neurosciences.

Related Stories

Neuron memory key to taming chronic pain

February 13, 2012
For some, the pain is so great that they can't even bear to have clothes touch their skin. For others, it means that every step is a deliberate and agonizing choice. Whether the pain is caused by arthritic joints, an injury ...

Have we met before? Scientists show why the brain has the answer

August 4, 2011
The research, led by Dr Clea Warburton and Dr Gareth Barker in the University's School of Physiology and Pharmacology and published in the Journal of Neuroscience, has investigated why we can recognise faces much better if ...

How connections in the brain must change to form memories could help to develop artificial cognitive computers

November 7, 2012
Exactly how memories are stored and accessed in the brain is unclear. Neuroscientists, however, do know that a primitive structure buried in the center of the brain, called the hippocampus, is a pivotal region of memory formation. ...

Where does it hurt? Pain map discovered in the human brain

November 29, 2012
(Phys.org)—Scientists have revealed the minutely detailed pain map of the hand that is contained within our brains, shedding light on how the brain makes us feel discomfort and potentially increasing our understanding of ...

Recommended for you

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

Artificial neural networks now able to help reveal a brain's structure

July 17, 2018
The function of the brain is based on the connections between nerve cells. In order to map these connections and to create the connectome, the "wiring diagram" of a brain, neurobiologists capture images of the brain with ...

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

'Concussion pill' shows promise in pre-clinical pilot study

July 16, 2018
In 2016, funded by a $16 million grant from Scythian, the multidisciplinary Miller School team embarked on a five-year study to examine the effects of combining CBD (a cannabinoid derivative of hemp) with an NMDA antagonist ...

Convergence of synaptic signals is mediated by a protein critical for learning and memory

July 16, 2018
Inside the brain, is a complex symphony of perfectly coordinated signaling. Hundreds of different molecules amplify, modify and carry information from tiny synaptic compartments all the way through the entire length of a ...

Synapse-specific plasticity governs the identity of overlapping memory traces

July 16, 2018
Memories are formed through long-term changes in synaptic efficacy, a process known as synaptic plasticity, and are stored in the brain in specific neuronal ensembles called engram cells, which are activated during corresponding ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.