In some dystonia cases, deep brain therapy benefits may linger after device turned off

February 12, 2013

Two patients freed from severe to disabling effects of dystonia through deep brain stimulation therapy continued to have symptom relief for months after their devices accidentally were fully or partly turned off, according to a report published online Feb. 11 in the journal Movement Disorders.

"Current thought is that symptoms will worsen within hours or days of device shut-off, but these two young men continued to have despite of DBS therapy for several months. To our knowledge, these two cases represent the longest duration of retained benefit in primary generalized dystonia. Moreover, when these patients' symptoms did return, severity was far milder than it was before DBS," said senior author Michele Tagliati, MD, director of the Movement Disorders Program at Cedars-Sinai's Department of Neurology.

Dystonia causes muscles to contract, with the affected body part twisting involuntarily and symptoms ranging from mild to crippling. If drugs – which often have undesirable side effects, especially at higher doses – fail to give relief, and may work together to supplement medications with , aimed at modulating abnormal . Electrical leads are implanted in the brain – one on each side – and an generator is placed near the collarbone. The device is then programmed with a remote, hand-held controller. Tagliati is an expert in device programming, which fine-tunes stimulation for individual patients.

Few studies have looked at the consequences of interrupted DBS therapy, although one found "fairly rapid worsening of dystonia in 14 patients after interruption of stimulation for 48 hours, with symptom severity at times becoming worse than the pre-operative baseline." In another study of 10 patients with generalized dystonia, however, symptoms did not return in four patients when stimulation was discontinued for 48 hours.

Findings from the 10-patient study correlate well with these two cases, Tagliati said.

"It appears that several factors – age, duration of disease, length of time the patient has received DBS treatment and stimulation parameters – determine which patients may retain after prolonged DBS interruption. Our two patients were young, 20 years old. They both began DBS therapy a relatively short time after disease onset; one at four years and the other at seven years. One had received continuous stimulation for five years and the other for 18 months before stimulation was interrupted," Tagliati said.

"We can't say for certain why these factors make the difference," he added, "But we theorize that a younger brain with shorter exposure to the negative effects of dystonia may be more responsive to therapy and have greater 'plasticity' to adapt back to normal. Both of our patients received DBS therapy at a lower energy than most patients experience, suggesting the possibility that low-frequency stimulation over an extended time may help retrain the brain's low-frequency electrical activity."

Both instances of device shut-off were accidental and were discovered during doctor visits after mild symptoms returned. The patient who had undergone five years of DBS therapy had only one stimulator turned off for about three months; the one stimulating the left side of his brain remained active. In the other patient, the left device had been off for about seven months and the right one for two months, Tagliati said.

Tagliati was senior author of a 2011 Journal of Neurology article on a study showing that for patients suffering from , deep brain therapy tends to get better, quicker results when started earlier rather than later.

"We knew from earlier work that younger patients with shorter disease duration had better clinical outcomes in the short term. In our 2011 article, we reported that they fare best in the long term, as well. That study uniquely showed that age and disease duration play complementary roles in predicting long-term clinical outcomes. The good news for older patients is that while they may not see the rapid gains of younger patients, their symptoms may gradually improve over several years," Tagliati said.

Explore further: Referring doctors increasingly aware of deep brain stimulation therapy; more work remains

Related Stories

Referring doctors increasingly aware of deep brain stimulation therapy; more work remains

August 16, 2011
While deep brain stimulation has gained recognition by referring physicians as a treatment for Parkinson's disease and other movement disorders, just half of the patients they recommend are appropriate candidates to begin ...

Cedars-Sinai movement disorders expert on international task force for dystonia treatment

July 21, 2011
Neurologist Michele Tagliati, MD, director of the Movement Disorders Program at Cedars-Sinai Medical Center, served on an elite international task force commissioned by the Movement Disorder Society to provide insights and ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.