New injectable hydrogel encourages regeneration, improves functionality after heart attack

February 20, 2013, University of California - San Diego
Microscopic images of pig hearts damaged by heart attack show the growth of new heart muscle tissue (Shown in Red, Figure A) after treatment with an injectable hydrogel compared to a heart left untreated (Figure B, right). The gel forms a scaffold in damaged areas of the heart, encouraging new cell growth and repair. Credit: Karen Christman, UC San Diego Jacobs School of Engineering.

University of California, San Diego bioengineers have demonstrated in a study in pigs that a new injectable hydrogel can repair damage from heart attacks, help the heart grow new tissue and blood vessels, and get the heart moving closer to how a healthy heart should. The results of the study were published Feb. 20 in Science Translational Medicine and clear the way for clinical trials to begin this year in Europe. The gel is injected through a catheter without requiring surgery or general anesthesia—a less invasive procedure for patients.

There are an estimated 785,000 new heart attack cases in the United States each year, with no established treatment for repairing the resulting damage to . Lead researcher Karen Christman, a professor in the Department of Bioengineering at the UC San Diego Jacobs School of Engineering, said the gel forms a scaffold in damaged areas of the heart, encouraging new cell growth and repair. Because the gel is made from taken from pigs, the damaged heart responds positively, creating a harmonious environment for rebuilding, rather than setting off a chain of adverse immune system defenses.

UC San Diego bioengineers demonstrated in a study in pigs that a new injectable hydrogel gets hearts moving more like they should -- as measured by the Global Wall Motion Index (GWMI) -- in hearts following heart attack. After a heart attack, the score was elevated; however, for pigs that were treated with the hydrogel, this index score dropped back closer to normal. Credit: Chart: Karen Christman, UC San Diego Jacobs School of Engineering

"While more people today are initially surviving heart attacks, many will eventually go into heart failure," said Christman. "Our data show that this hydrogel can increase cardiac muscle and reduce in the region damaged by the heart attack, which prevents heart failure. These results suggest this may be a novel minimally invasive therapy to prevent after a heart attack in humans."

The hydrogel is made from cardiac connective tissue that is stripped of through a cleansing process, freeze-dried and milled into powder form, and then liquefied into a fluid that can be easily injected into the heart. Once it hits body temperature, the liquid turns into a semi-solid, porous gel that encourages cells to repopulate areas of damaged cardiac tissue and to improve , according to Christman. The material is also biocompatible; animals treated with the hydrogel suffered no adverse affects such as inflammation, lesions or arrhythmic heart beating, according to safety experiments conducted as part of the study. Further tests with human blood samples showed that the gel had no effect on the blood's clotting ability, which underscores the biocompatibility of the treatment for use in humans.

Tissue spins in a beaker at the end of the cleansing process that removes all of the cells. The process retains the tissue’s structural proteins, a key component of the hydrogel. Credit: Photo Credit: UC San Diego Jacobs School of Engineering.

San Diego-based startup, Ventrix, Inc., which Christman co-founded, has licensed the technology for development and commercialization. Christman also serves on the company's board. "We are excited and encouraged by the results of the study leading to a novel regenerative medicine solution for cardiac repair. The technology offers the potential for a longer and better quality of life for millions of heart attack sufferers," said Adam Kinsey, the CEO of Ventrix.

Explore further: Injectable gel could repair tissue damaged by heart attack

Related Stories

Injectable gel could repair tissue damaged by heart attack

February 22, 2012
(Medical Xpress) -- University of California, San Diego researchers have developed a new injectable hydrogel that could be an effective and safe treatment for tissue damage caused by heart attacks.

Nanofibers may help treat heart attacks

August 10, 2012
(Medical Xpress) -- Cardiovascular diseases kill over 17 million people a year globally, according to the World Health Organization, and many more suffer heart attacks but recover. Even those who do recover are more prone ...

Genetically engineered cardiac stem cells repaired damaged mouse heart

July 19, 2011
Genetically engineered human cardiac stem cells helped repair damaged heart tissue and improved function after a heart attack, in a new animal study.

Recommended for you

Team develops new way to grow blood vessels

August 17, 2018
Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants. To address this issue, researchers from Texas A&M University have developed ...

New imaging technique can spot tuberculosis infection in an hour

August 16, 2018
Guided by glowing bacteria, researchers have devised an imaging technique that can diagnose live tuberculosis in an hour and help monitor the efficacy of treatments. That's particularly critical because many TB strains have ...

Obesity, infertility and oxidative stress in mouse egg cells

August 16, 2018
Excessive body fat is associated with negative effects on female fertility and pregnancy. In mice, maternal obesity impairs proper development of egg precursor cells called oocytes. In a recent paper published in Molecular ...

Research shows it's possible to reverse damage caused by aging cells

August 15, 2018
What's the secret to aging well? University of Minnesota Medical School researchers have answered it- on a cellular level.

This matrix delivers healing stem cells to injured elderly muscles

August 15, 2018
A car accident leaves an aging patient with severe muscle injuries that won't heal. Treatment with muscle stem cells from a donor might restore damaged tissue, but doctors are unable to deliver them effectively. A new method ...

Male tobacco smokers have brain-wide reduction of CB1 receptors

August 15, 2018
Chronic, frequent tobacco smokers have a decreased number of cannabinoid CB1 receptors, the "pot receptor", when compared with non-smokers, reports a study in Biological Psychiatry.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.