World premiere of muscle- and nerve-controlled arm prosthesis

February 22, 2013, Chalmers University of Technology

For the first time an operation has been conducted, at Sahlgrenska University Hospital, where electrodes have been permanently implanted in nerves and muscles of an amputee to directly control an arm prosthesis. The result allows natural control of an advanced robotic prosthesis, similarly to the motions of a natural limb.

A surgical team led by Dr Rickard Brånemark, Sahlgrenska University Hospital, has carried out the first operation of its kind, where neuromuscular have been permanently implanted in an . The operation was possible thanks to new advanced technology developed by Max Ortiz Catalan, supervised by Rickard Brånemark at Sahlgrenska University Hospital and Bo Håkansson at Chalmers University of Technology.

"The is a major breakthrough that has many advantages over current technology, which provides very limited functionality to patients with missing limbs," says Rickard Brånemark.

Big challenges

There have been two major issues on the advancement of robotic : 1) how to firmly attach an to the ; 2) how to intuitively and efficiently control the prosthesis in order to be truly useful and regain lost functionality.

World premiere of muscle- and nerve-controlled arm prosthesis

"This technology solves both these problems by combining a bone anchored prosthesis with implanted electrodes," said Rickard Brånemark, who along with his team has developed a pioneering implant system called Opra, Osseointegrated Prostheses for the Rehabilitation of Amputees.

A titanium screw, so-called osseointegrated implant, is used to anchor the prosthesis directly to the stump, which provides many advantages over a traditionally used socket prosthesis.

"It allows complete degree of motion for the patient, fewer skin related problems and a more natural feeling that the prosthesis is part of the body. Overall, it brings better quality of life to people who are amputees," says Rickard Brånemark.

How it works

Presently, robotic prostheses rely on electrodes over the skin to pick up the muscles electrical activity to drive few actions by the prosthesis. The problem with this approach is that normally only two functions are regained out of the tens of different movements an able-body is capable of. By using implanted electrodes, more signals can be retrieved, and therefore control of more movements is possible. Furthermore, it is also possible to provide the patient with natural perception, or "feeling", through neural stimulation.

"We believe that implanted electrodes, together with a long-term stable human-machine interface provided by the osseointegrated implant, is a breakthrough that will pave the way for a new era in limb replacement," says Rickard Brånemark.

The patient

The first patient has recently been treated with this technology, and the first tests gave excellent results. The patient, a previous user of a robotic hand, reported major difficulties in operating that device in cold and hot environments and interference from shoulder muscles. These issues have now disappeared, thanks to the new system, and the patient has now reported that almost no effort is required to generate control signals. Moreover, tests have shown that more movements may be performed in a coordinated way, and that several movements can be performed simultaneously.

"The next step will be to test electrical stimulation of nerves to see if the patient can sense environmental stimuli, that is, get an artificial sensation. The ultimate goal is to make a more natural way to replace a lost limb, to improve the for people with amputations," says Rickard Brånemark.

Explore further: Thought-controlled prosthesis is changing the lives of amputees

More information: See also an earlier story on this project: medicalxpress.com/news/2012-11 … thesis-amputees.html

Related Stories

Thought-controlled prosthesis is changing the lives of amputees

November 28, 2012
The world's first implantable robotic arm controlled by thoughts is being developed by Chalmers researcher Max Ortiz Catalan. The first operations on patients will take place this winter.

Bionic leg undergoing clinical trials

April 22, 2011
(Medical Xpress) -- A "bionic" leg designed for people who have lost a lower leg is undergoing clinical trials sponsored by the US Army. The researchers hope the leg will be able to learn the patient's nerve signal patterns ...

Neural interface for prosthesis can restore function in motor control brain areas

August 20, 2012
Amputation disrupts not only the peripheral nervous system but also central structures of the brain. While the brain is able to adapt and compensate for injury in certain conditions, in amputees the traumatic event prevents ...

The quest for a better bionic hand

February 18, 2013
For an amputee, replacing a missing limb with a functional prosthetic can alleviate physical or emotional distress and mean a return of vocational ability or cosmetics. Studies show, however, that up to 50 percent of hand ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.