Fralin entomologists map out the genetics behind a deadly disease

March 21, 2013

(Medical Xpress)—Stopping the spread of dengue infection— a potentially fatal tropical disease transmitted by the Aedes aegypti mosquito— could be one of the biggest challenges of our time. About half of the human population is at risk for this disease, and threat levels are on the rise in the United States due to increased international travel and an ideal climate for mosquitoes in humid, hot areas such as Florida.

Symptoms of dengue fever, according to the Centers for Control, are severe headache; bleeding; and severe muscle, joint, or eye pain.

The key to zapping the disease's transmission is the careful mapping of the mosquito's genome, according to Virginia Tech entomologist Maria Sharakhova, a research scientist in the College of Agriculture and Life Sciences and the principal investigator of a study published in February in PLoS Neglected Tropical Diseases.

If scientists can identify the location of the genes that allow for dengue transmission, and inhibit this trait in of , the disease might hit a roadblock.

Sharakhova and her research team developed a 'master map' of the mosquito's genome that allows scientists to view the locale of genes contributing to the trait of dengue transmission. Unlike previous studies attempting to map genes, this technique allows researchers to view multiple "unrelated" locations in a few major chromosome clusters.

"The map suggests a possibility that the same genes control the transmission of different pathogens, which would allow us to find and control these genes much more efficiently," said Igor Sharakhov, a coauthor of the paper and an associate professor of entomology in the College of Agriculture and Life Sciences affiliated with the Fralin Life Science Institute.

"This is a landmark study. Prior to the work of Sharakhova and Sharakhov, the Aedes aegypti genome was woefully incomplete. It was like a mixed-up jigsaw puzzle with no order and no logic," said Leslie Vosshall, the Robin Chemers Neustein Professor of Neurogenetics and Behavior at The Rockefeller University, who did not participate in the study. "These scientists have created the important foundations of a complete genetic map, something that is needed to progress to the next set of crucial experiments with this major disease vector. A genetic map is a blueprint that allows scientists to map traits to genes and this paper now allows us to attempt this in this mosquito."

"This project is a true tour de force and it is now only a matter of time to obtain the full DNA sequence of the three large chromosomes to catapult research into new directions and high-resolution detail for this important mosquito," said Jeffrey Powell, professor of ecology and evolutionary biology at Yale University, who also did not participate in the study.

The map may also help curb other diseases transmitted by Aedes aegypti, such as yellow fever that leads to a liver disease, and lymphatic filariasis, which caused by a worm that leads to the disease elephantiasis.

Explore further: Brazil to breed GM mosquitoes to combat dengue

More information: www.plosntds.org/article/info: … journal.pntd.0002052

Related Stories

Brazil to breed GM mosquitoes to combat dengue

July 10, 2012
Brazil said Monday it will breed huge numbers of genetically modified mosquitoes to help stop the spread of dengue fever, an illness that has already struck nearly 500,000 people this year nationwide.

Dengue virus turns on mosquito genes that make them hungrier

March 29, 2012
Researchers at the Johns Hopkins Bloomberg School of Public Health have, for the first time, shown that infection with dengue virus turns on mosquito genes that makes them hungrier and better feeders, and therefore possibly ...

First big dengue fever outbreak in Europe since 1920s, EU reports

November 21, 2012
Europe is experiencing its first sustained transmission of dengue fever since the 1920s after an outbreak of the mosquito-borne disease in Madeira, Portugal that has infected more than 1,300 people, an EU agency said.

WHO: Dengue showing global 'epidemic potential'

January 16, 2013
The World Health Organisation said on Wednesday that it had charted progress in the fight against tropical diseases but warned that dengue fever was spreading at an alarming rate.

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.