New insights into the development of the heart

March 26, 2013

Viewed from the outside, our body looks completely symmetrical. However, most internal organs – including the heart – are formed asymmetrically. The right side of the heart is responsible for pulmonary circulation; the left side supplies the rest of the body. This asymmetry allows the heart to do its job effectively. In a study on zebrafish embryos, the researchers Dr. Justus Veerkamp and PD Dr. Salim Seyfried from the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch have now shown how the left and right sides of the heart develop differently. Their findings were published in the journal Developmental Cell.

A protein called Nodal plays an important role in the development of asymmetry. In an early stage of , Nodal is formed on the left side and triggers a multi-step signaling cascade that enables the cardiac progenitor cells on this side to migrate faster. The researchers were able to observe the migration of the cardiac in the zebrafish embryos in vivo. Since the embryos are transparent it is possible to view each single cell using the microscope.

While analyzing the individual proteins involved in the asymmetric development of the heart, Dr. Veerkamp and Dr. Seyfried encountered a surprise: Previously, scientists had assumed that another signaling molecule, the protein Bmp, triggered on the left side of the heart and, as a consequence, must be very active there.

Current studies, however, show just the opposite: Bmp reduces the motility of the cells that form the heart. The protein Nodal regulates this process by activating the enzyme Has2. This in turn restricts Bmp activity on the left side. Thus, the cells of the left side of the heart migrate faster and ultimately form a functional, asymmetric heart.

However, when the researchers modulated the experiments so that individual proteins of the signaling cascade were expressed at elevated or decreased levels, the showed subtle differences in "random walk" cell motility rates. This resulted in the development of hearts that were completely symmetrical or whose sides were laterally inverted.

Many of these malformations of the heart in zebrafish embryos are also known in humans. Often asymmetric disorders not only affect the heart but also other organs such as the spleen. It may be missing or two spleens may be present. Depending on the severity of the malformations, the problems of the affected individuals vary in seriousness. It is also possible that the processes identified by the researchers are also involved in the development of diseases in which cell migration plays a role.

Explore further: Mechanism uncovered for the establishment of vertebrate left-right asymmetry

More information: Unilateral dampening of Bmp activity by Nodal generates cardiac left-right asymmetry dx.doi.org/10.1016/j.devcel.2013.01.026

Related Stories

Mechanism uncovered for the establishment of vertebrate left-right asymmetry

September 29, 2011
A research team at the Hubrecht Institute, Utrecht, demonstrates a mechanism by which left–right asymmetry in the body is established and maintained. The study, published in the open-access journal PLoS Genetics on September ...

Congenital heart defects could have their origin during very early pregnancy

December 13, 2012
The origins of congenital heart defects could be traced right back to the first stages of embryonic development, according to University of East Anglia (UEA) research.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.