Link between faster 'biological' aging and risk of developing age-related diseases

March 27, 2013

An international team of scientists led by the University of Leicester has found new evidence that links faster 'biological' ageing to the risk of developing several age-related diseases - including heart disease, multiple sclerosis and various cancers.

The study involved scientists in 14 centres across 8 countries, working as part of the ENGAGE Consortium (list of research teams is give below). The research is published online today in the journal Nature Genetics.

The project studied a feature of called telomeres. Telomeres sit on the end of our chromosomes – the strands of DNA stored in the of cells.

The telomeres shorten each time a cell divides to make new cells, until they reach a critical short length and the cells enter an inactive state and then die. Therefore telomeres shorten as an individual gets older. But, individuals are born with different telomere lengths and the rate at which they subsequently shorten can also vary. The speed with which telomeres wear down is a measure of 'biological ageing'.

Professor Nilesh Samani, British Heart Foundation Professor of at the University of Leicester and Director of the National Institute for (NIHR) Leicester Cardiovascular Unit, who led the project said: "Although heart disease and cancers are more common as one gets older, not everyone gets them - and some people get them at an earlier . It has been suspected that the occurrence of these diseases may in part be related to some people "biologically" ageing more quickly than others."

The research team measured telomere lengths in over 48,000 individuals and looked at their DNA and identified seven genetic variants that were associated with telomere length. They then asked the question whether these genetic variants also affected risk of various diseases. As DNA cannot be changed by lifestyle or , an association of these genetic variants which affect telomere length with a disease also would suggest a causal link between telomere length and that disease.

The scientists found that the variants were indeed linked to risk of several types of cancers including colorectal cancer as well as diseases like and celiac disease. Most interestingly, the authors found that in aggregate the seven variants also associated with risk of coronary artery disease which can lead to heart attacks.

Professor Samani added: "These are really exciting findings. We had previous evidence that shorter telomere lengths are associated with increased risk of coronary artery disease but were not sure whether this association was causal or not. This research strongly suggests that biological ageing plays an important role in causing disease, the commonest cause of death in the world. This provides a novel way of looking at the disease and at least partly explains why some patients develop it early and others don't develop it at all even if they carry other risk factors."

Professor Tim Spector from King's College London, who co-led the project added: "Our research over the last five years suggests that some people are genetically programmed to age at a faster rate. When exposed to 'detrimental ' environments for telomeres - like smoking, obesity, or lack of exercise - they are likely to become even biologically older and consequently be more at risk of age-related diseases like and cancer."

Dr Mangino Massimo who was the lead analyst for King's College London, said: "This study included many UK twin volunteers and has been made possible by a great collaboration of scientists from across Europe. Our research is key to understanding the complex genetic jigsaw of a whole variety of human age-related diseases."

Dr Veryan Codd, Senior Research Associate at the University of Leicester who co-ordinated the study and carried out the majority of the telomere length measurements said: "The findings open of the possibility that manipulating telomere length could have health benefits. While there is a long way to go before any clinical application, there are data in experimental models where lengthening telomere length has been shown to retard and in some situations reverse age-related changes in several organs."

Explore further: Scientists link chromosome length to heart disease risk

Related Stories

Scientists link chromosome length to heart disease risk

March 25, 2012
No one really wants the short end of the stick, in this case the short end of a chromosome. Telomeres, which are DNA-protein complexes at the ends of chromosomes, can be thought of as protein "caps" that protect chromosomes ...

Blood chromosome differences are linked to pancreatic cancer

October 23, 2012
A new study shows that a blood marker is linked to pancreatic cancer, according to a study published today by scientists at the University of Wisconsin Carbone Cancer Center and Mayo Clinic.

Telomere stress reveals insight into ageing

March 1, 2012
Scientists at Newcastle University have unlocked clues that give us a greater understanding of the ageing process. 

New study finds length of DNA strands can predict life expectancy

March 10, 2013
Can the length of strands of DNA in patients with heart disease predict their life expectancy? Researchers from the Intermountain Heart Institute at Intermountain Medical Center in Salt Lake City, who studied the DNA of more ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.