Protein synthesis blocker may hold key to reducing effects of traumatic events

March 4, 2013

Reducing fear and stress following a traumatic event could be as simple as providing a protein synthesis blocker to the brain, report a team of researchers from McLean Hospital, Harvard Medical School, McGill University, and Massachusetts General Hospital in a paper published in the March 4 issue of Proceedings of the National Academy of Sciences.

"This is an important basic neuroscience finding that has the potential to have for the way individuals with posttraumatic stress disorder are treated," said Vadim Bolshakov, PhD, director of the Cellular Neurobiology Laboratory at McLean Hospital. "We used a well known behavioral paradigm that we think models PTSD, conditioning, to explore how fearful memories are formed. In our study, the level of fear exhibited by experimental subjects was significantly reduced as a result of decreased signal transfer between cells in the amygdala, a key brain region in fear-related behaviors."

Influenced by the original findings of Karim Nader, PhD, professor of Psychology at McGill University, whose pioneering work showed that old memories should be un-stored in their brain after their recollection in order to last, Bolshakov's team exposed rats to auditory stimulus that the animals learned to associate with a mildly traumatic event. After a single exposure to the training procedures, the rats exhibited fear during subsequent exposures to . The researchers then provided the animals with rapamycin, a blocker, immediately after memory was retrieved in order to control bonding between the cells in the brain. The animals exhibited significantly less fear in response to the fear-invoking stimulus when retested the next day.

"The animals showed stereotypical signs of fear after the initial exposure to the auditory stimulus," explained Nader, a co-author on the paper. "Following the administration of rapamycin, we show a significant decrease in fear, but not a complete elimination. We were surprised to note that activity between cells was significantly affected by postsynaptic mechanisms."

The findings of this study, which was funded by a grant from the United States Department of Defense spearheaded by Roger Pitman, suggest that different plasticity rules within cells in the brain are recruited during the formation of the original fear memory and after fear memory was reactivated.

"Although further work at the molecular level needs to be completed, we are hopeful that this unexpected discovery is the foundation needed to identify ways in which we can better treat anxiety disorders in which fear condition plays a role, such as post traumatic stress disorder," said Bolshakov.

Explore further: Study offers new insight for preventing fear relapse after trauma

Related Stories

Study offers new insight for preventing fear relapse after trauma

November 29, 2011
(Medical Xpress) -- In a new study, University of Michigan researchers identified brain circuits in rats that are responsible for the return of fear after it has been suppressed behaviorally.

Fighting phobias involves creation of 'competing' memories

October 22, 2012
Most people have a fear of something but for 1 in 10 people, fear can turn into a phobia. The most common phobias being a fear of spiders, snakes, heights, the dark, being in crowds or tight spaces, animals and people. Then ...

Changes in patterns of brain activity predict fear memory formation

March 4, 2013
Psychologists at the University of Amsterdam (UvA) have discovered that changes in patterns of brain activity during fearful experiences predict whether a long-term fear memory is formed. The research results have recently ...

Regulating the formation of fear extinction memory

August 15, 2011
(Medical Xpress) -- Neuroscientists at UQ's Queensland Brain Institute have discovered a previously unrecognized layer of gene regulation associated with fear extinction.

Recommended for you

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.