Scientists discover mechanism of resistance to vital leukaemia treatment, opening door to new therapies

March 19, 2013
Scientists discover mechanism of resistance to vital leukaemia treatment, opening door to new therapies

(Medical Xpress)—Research published in the journal Cancer Cell has revealed the mechanism by which leukaemia cells develop resistance to the ATRA (All-Trans-Retinoic Acid) treatment, used to treat an aggressive form of cancer called acute promyelocytic leukemia (APL: a fast-growing cancer in which there are too many immature blood-forming cells in the blood and bone marrow). The research is by Professor Eric So, Department of Haematological Medicine at King's College London, and colleagues, and was funded by the charity Leukaemia & Lymphoma Research.

APL is a subtype of acute myelogenous leukaemia (AML) characterised by the presence of a specific leukaemia-inducing nuclear protein called PML-RARa, which activates abnormal gene expression programmes in the . APL represents five to eight per cent of AML in adults (approximately 200 new cases occur each year in the UK and 1500 new cases each year in the USA). The median age of diagnosis is approximately 40 years, which is considerably younger than the other subtypes of AML (70 years). Without proper medicine and treatment, APL is fatal.

The successful application of ATRA treatment for APL started in 1986 in Shanghai, China. It was soon widely adapted around the world. While ATRA alone induces a complete remission in the majority of the APL patients, patients will relapse and become resistant to the treatment. Recent refinements have improved results: ATRA is used in combination with low dose chemotherapy and more recently with Arsenic Trioxide, which have now led to long-term complete remissions in as high as 80 per cent of patients.

But while ATRA treatment revolutionised care for APL, and has been the paradigm of targeted therapy for leukaemia-inducing nuclear proteins, the underlying mechanisms remain largely unknown, and roughly 20 per cent of patients who enter into a complete remission will still relapse and become resistant to the treatment. Only half of these patients will be alive after three years. Also, while the success of ATRA treatment in APL sets the stage for targeted therapy of leukaemia-inducing nuclear proteins, retinoic acid (RA) treatment has so far been shown to be ineffective in treating other cancers. Thus cracking the mechanism of action of this drug is essential.

In this study, Dr So and colleagues discovered the accessory enzyme PHF8 as a critical molecular sensor for mediating ATRA treatment response in APL. Using a molecular biology approach, his group identified that PHF8 specifically bound to PML-RARa in response to ATRA treatment, and this interaction was required for eradication of APL . ATRA-resistant APL cells also had reduced level of PHF8. By activating the activities of PHF8 using a molecular biology approach or chemical intervention, it could resurrect ATRA-sensitivity to treatment resistant APL cells in both mouse models and human cell lines derived from APL patients. In contrast, its suppression led to ATRA-.

In addition, they discovered that PHF8 is regulated by a specific type of protein modification, called phosphorylation. As a proof of principle experiment, Dr. So and colleagues demonstrated that pharmacological enhancement of PHF8 phosphorylation was able to sensitise treatment resistant APL cells to ATRA both in cell culture and in the whole animals. Dr So said: 'These results reveal a critical function of this class of accessory enzymes in mediating treatment and open up a novel avenue for overcoming treatment resistance in APL. The next stage of the research will be to identify the key molecules that affect the activity of PHF8, and to develop specific drugs that will promote the functions of PHF8 in mediating response.'

In this study, a generic inhibitor (okadaic acid) that promotes PHF8 phosphorylation has shown an encouraging efficacy in inducing ATRA response in resistant APL cells. 'It is quite possible that specific and more effective drugs can be developed if we can improve the specificity of some of these generic inhibitors in the coming years,' said Dr So. 'In parallel, we are also trying to identify the key and tractable PHF8 regulators for the development of a new class of small molecule inhibitors effectively targeting the activity of PHF8.'

Explore further: Scientists find genetic key to why some cancer patients don't respond to treatment

Related Stories

Scientists find genetic key to why some cancer patients don't respond to treatment

January 5, 2012
(Medical Xpress) -- Researchers from Newcastle University have identified a gene variation carried by 20% of the population which can significantly affect how patients with a rare type of blood cancer will respond to treatment.

ATRA and arsenic trioxide versus ATRA and idarubicin for newly diagnosed, non high-risk acute promyelocytic

December 9, 2012
New research demonstrates the efficacy of the first curative treatment for acute promyelocytic leukemia (APL) that does not include chemotherapy, marking an important step toward front-line use of targeted therapies for acute ...

Tranylcypromine antidepressant shows promise as cancer treatment

March 11, 2012
A retinoid called all-trans retinoic acid (ATRA), which is a vitamin A-derivative, is already used successfully to treat a rare sub-type of acute myeloid leukemia (AML), however this drug has not been effective for the more ...

Link between prostate cancer and vitamin A may lead to improved treatment

September 5, 2012
(Medical Xpress)—Cancer scientists at the University of York have shown a link between prostate cancer and vitamin A for the first time.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.