From shape-shifting to therapy

March 12, 2013, University of Cambridge
Shape-shifting in an ATP-dependent multidrug transporter involves formation of a tetrahelix bundle (in red and blue). Credit: Hendrik van Veen

(Medical Xpress)—The latest research into the intricate processes that let substances into and out of cells will help to lay the foundations for the next generation of therapies for major diseases.

A team based at the University of Cambridge's Department of Pharmacology has developed a means of tracking – and thus understanding – the processes by which multi-drug transporters deflect and eject substances from cells. Their work will form the basis for the development of new therapies to treat cancers and .

Each cell in our bodies – and every cell of every organism from bacteria upwards – is surrounded by a fatty layer called the . This membrane acts as a molecular sieve that enables entry of vital nutrients, such as sugars, into the cell and allows exit of the garbage. The traffic of substances across the membrane is carried out by tiny molecular machines, known as . These transport proteins ensure a healthy environment in the cell's interior, so that cells can live and make more cells.

But the picture is much more complex as there are several types of transport proteins. While most transporters are specialists and welcome particular substances, some others eject an extraordinarily broad range of substances from the cell. These so-called 'multi-drug transporters' are essential defense systems in all organisms ranging from bacteria to humans. They prevent the entry into the cell of that are produced by our bodies or released by competing for space and nutrients.

"As transport proteins, multi-drug transporters are responsible for producing resistance in cancers and pathogenic micro-organisms. When toxic drugs are used as part of anticancer and antimicrobial therapies, multi-drug transporters can impair the treatment of life-threatening disease," said Dr Hendrik van Veen at Cambridge's Department of Pharmacology.

An understanding of how multidrug transporters work is essential to getting a better grasp both of the roles of multi-drug transporters in the healthy functioning of cells, and how they can be stopped when things go wrong – for example when malicious cells invade our bodies.

Scientists have proposed since the 1950s that transport proteins work by switching their three-dimensional shape, using metabolic energy as fuel to alter their conformation in order to 'flip' molecules from inside the barrier of the cell membrane to the outside. However, the exact molecular basis of this switching has baffled researchers for some time.

Dr Hendrik van Veen and colleagues investigated the mechanism of molecular shape-shifting of a multi-drug transporter that uses the energy-carrying molecule ATP (adenosine triphosphate). They used genetic engineering to tweak a critical part of the transporter – a group of four helical structures embedded in the molecule (referred to as the tetrahelix bundle) that seems to act as a 'spring-lock' for the larger molecular structure of the protein.

He said: "Multidrug transporters operate by a mechanism in which parts of their structure responsible for binding of are first exposed to the inside of the cell, where they bind the drug, and then to the outside of the cell, where they release it. This mechanism relies on two defined shapes of the transporter, an inward-facing shape and an outward-facing shape. On the basis of three-dimensional structures of the transporter, we postulated that the tetrahelix bundle would be important for this shape-shifting."

By manipulating the sections of DNA that control the architecture of the multi-drug transporter, the researchers were able to produce bacteria that made altered versions of the transport protein. The researchers then built the modified proteins into 'inside-out'-oriented bubbles of cell membrane in which the transporters import the drug from the outside, thus making it easier to follow the transport process.

Dr van Veen and his team were able to show that both transport and the associated changes in protein conformation were greatly impaired by the structural alterations in the tetrahelix bundle, while other features, such as the transporter's ability to bind ATP and drugs, were not significantly affected. Because the activity of multi-drug transporters is critical in preventing the entry of anticancer agents and antimicrobial drugs into cells, this research lays the foundation for the development of agents that will block the 'spring-lock' of the transporter, thus rendering it powerless.

"Tetrahelix bundles are shared by all ATP-dependent multi-drug transport proteins and are essential for their activity. To use a metaphor, we're working on the development of sticks to put in the spokes to stop these wheels from turning, and the use of these sticks in a next generation of and antimicrobial therapies that will tackle the development of drug resistance," said Dr van Veen.

Explore further: Hot on the trail of metabolic diseases and resistance to antibiotics

Related Stories

Hot on the trail of metabolic diseases and resistance to antibiotics

March 28, 2012
Proteins belonging to the large and important family of ABC transporters have been associated with metabolic diseases and can cause resistance to antibiotics. Biochemists from the University of Zurich and the NCCR Structural ...

Discovery could reduce chemotherapy's side effects

March 11, 2012
A team of researchers at Duke University has determined the structure of a key molecule that can carry chemotherapy and anti-viral drugs into cells, which could help to create more effective drugs with fewer effects to healthy ...

Scientist discovers new target for cancer therapy

January 24, 2013
Tumour cells need far more nutrients than normal cells and these nutrients cannot get into the malignant cells without transporters.

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.