Study identifies 'chink in the armor' of Schmallenberg virus

April 17, 2013

A key building block in the Schmallenberg virus could be targeted by anti-viral drugs, according to a new study led from the University of Leeds.

The disease, which causes birth defects and in sheep, goats and cattle, was first discovered in Germany in late 2011 and has already spread to more than 5,000 farms across Europe, and 1,500 farms in the UK alone.

There is currently no way of treating infected animals, but a study published in Nucleic Acids Research reports that the Schmallenberg virus nucleocapsid protein, which protects its , could be its Achilles' heel.

A University of Leeds-led team of virologists and structural used and to decipher the three-dimensional shape of the nucleocapsid protein and also show how it builds the inner workings of the virus itself.

Dr John Barr, of the University of Leeds' Faculty of Biological Sciences and co-leader of the study, said: "The protein forms a chain a bit like a necklace that wraps around and protects the RNA, the genetic material of the virus. This chain also recruits other proteins that are vital to the virus' ability to multiply and cause disease. We have developed a very finely detailed picture of the shape of the protein and all the nooks and crannies that it needs to present to other molecules to be able to function."

The nucleocapsid proteins bind together in a ring-like structure of four identical protein units, and the ring is held together by contacts between the protein units, a bit like people holding hands in a circle.

Co-lead Dr Tom Edwards, also from Leeds' Faculty of Biological Sciences, said: "The shape of the nucleocapsid protein has shown us important details of how the individual proteins in these rings are interacting. This not only tells us how the virus works, but importantly we think we can block that interaction and disrupt the process of making the ring. That could be the chink in its armour. It would stop the wrapping up the RNA, and would essentially kill the virus. We are now designing small molecules that could block ring formation and could therefore be an effective antiviral drug."

The Schmallenberg virus appears to be spread by midges. It causes a relatively mild illness in adult animals but is responsible for stillbirths and birth defects in cattle, sheep and goats.

The Department for Environment, Food and Rural Affairs (DEFRA) believes the disease was probably brought into the UK from infected midges blown across the Channel. It has since spread rapidly, causing severe losses on many holdings across the entire UK. There is new evidence that the Schmallenberg virus can also spread to wild animal populations such as deer and wild boar, raising the possibility that a reservoir of the disease could develop outside the control of farmers and cause problems for many years to come.

Developing a vaccine for the Schmallenberg virus is a possibility. One already exists for the similar Akabane , but the discovery by the Leeds-led team is the first step toward developing a treatment that could be used after an animal is infected.

The research was funded by The Wellcome Trust and involved researchers from The University of Leeds, The University of Alabama at Birmingham, The University of St Andrews, The Veterinary Laboratories Agency, and the University of Liverpool.

Explore further: New disease hits Dutch, German livestock

More information: The paper, "Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization," is published in Nucleic Acids Research.

Related Stories

New disease hits Dutch, German livestock

January 26, 2012
A new livestock disease causing deformities at birth has been detected in at least five European countries, including the Netherlands and Germany, a Dutch agriculture ministry spokesman said Thursday.

Scientists engineer the Schmallenberg virus genome to understand how to reduce disease caused by the virus

January 10, 2013
Researchers from the MRC Centre for Virus Research at the University of Glasgow in Scotland have developed methods to synthesize and change the genome of Schmallenberg virus (SBV). SBV is a recently discovered pathogen of ...

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.