Gene regenerates heart tissue, critical finding for heart failure prevention

April 17, 2013, UT Southwestern Medical Center

Researchers at UT Southwestern Medical Center have identified a specific gene that regulates the heart's ability to regenerate after injuries.

The function of the gene, called Meis1, in the was not known previously. The findings of the UTSW investigation are available online in Nature.

"We found that the activity of the Meis1 gene increases significantly in soon after birth, right around the time stop dividing. Based on this observation we asked a simple question: If the Meis1 gene is deleted from the heart, will heart cells continue to divide through adulthood? The answer is 'yes'," said Dr. Hesham Sadek, assistant professor of in the division of , and senior author of the study.

In 2011, Dr. Sadek's laboratory showed that the newborn mammalian heart is capable of a vigorous, regenerative response to injury through division of its own cells. As the newborn develops, the heart rapidly loses the ability to regenerate and to repair injuries such as heart attacks.

The research team demonstrated that deletion of Meis1 extended the proliferation period in the hearts of newborn mice, and also re-activated the regenerative process in the adult mouse heart without harmful effect on cardiac functions. This new finding demonstrates that Meis1 is a key factor in the regeneration process, and the understanding of the gene's function may lead to new for adult heart regeneration. The findings also provide a possible alternative to current adult heart regeneration research, which focuses on the use of to replace damaged heart cells.

"Meis1 is a transcription factor, which acts like a software program that has the ability to control the function of other genes. In this case, we found that Meis1 controls several genes that normally act as brakes on cell division," Dr. Sadek said. "As such, Meis1 could possibly be used as an on/off switch for making adult heart cells divide. If done successfully, this ability could introduce a new era in treatment for heart failure."

According to the American Heart Association, almost 6 million people in the U.S. have heart failure, which occurs when the heart cannot pump enough blood and oxygen to support other organs. Heart disease is the leading cause of death for both men and women in the country, according to the Centers for Disease Control and Prevention.

The study received support from the American Heart Association, the Gilead Research Scholars Program in Cardiovascular Disease, the Foundation for Heart Failure Research, and the National Institutes of Health.

The co-first authors of the study are Dr. Ahmed I. Mahmoud, who is now a postdoctoral fellow at Harvard University; Dr. Fatih Kocabas, who is now a postdoctoral fellow at North American College; and Dr. Shalini A. Muralidhar, a postdoctoral research fellow II of internal medicine. Other researchers at UT Southwestern involved in the study are Wataru Kimura, a visiting senior researcher of internal medicine; Ahmed Koura, now a medical student at Ain Shams University in Egypt; Dr. Enzo Porrello, research fellow and faculty member at the University of Queensland in Australia; and Suwannee Thet, a research associate of internal medicine.

Explore further: Research pinpoints key gene for regenerating cells after heart attack

More information: Paper dx.doi.org/10.1038/nature12054

Related Stories

Research pinpoints key gene for regenerating cells after heart attack

December 20, 2012
UT Southwestern Medical Center researchers have pinpointed a molecular mechanism needed to unleash the heart's ability to regenerate, a critical step toward developing eventual therapies for damage suffered following a heart ...

The birth of new cardiac cells

December 5, 2012
Recent research has shown that there are new cells that develop in the heart, but how these cardiac cells are born and how frequently they are generated remains unclear. In new research from Brigham and Women's Hospital (BWH), ...

Hormone reduces risk of heart failure from chemotherapy

August 4, 2011
Recent studies have shown that the heart contains cardiac stem cells that can contribute to regeneration and healing during disease and aging. However, little is known about the molecules and pathways that regulate these ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.