Research pinpoints key gene for regenerating cells after heart attack

December 20, 2012

UT Southwestern Medical Center researchers have pinpointed a molecular mechanism needed to unleash the heart's ability to regenerate, a critical step toward developing eventual therapies for damage suffered following a heart attack.

Cardiologists and molecular biologists at UT Southwestern, teaming up to study in mice how regenerates, found that microRNAs – tiny strands that regulate – contribute to the heart's ability to regenerate up to one week after birth. Soon thereafter the heart loses the ability to regenerate. By determining the fundamental mechanisms that control the heart's natural regenerative on-off switch, researchers have begun to better understand the No. 1 hurdle in – the inability of the heart to regenerate following injury.

"For the first time since we began studying how cells respond to a heart attack, we now believe it is possible to activate a program of endogenous regeneration," said Dr. Hesham Sadek, assistant professor of internal medicine in the division of cardiology, and the senior author of a study in the .

Each year, nearly 1 million people in the United States have a heart attack, while about 600,000 die of cardiovascular disease annually. Heart disease is the leading cause of death in both men and women, according to figures from the .

As researchers worldwide strive to find ways that help the cope with myriad illnesses and injuries, scientists at UT Southwestern have focused their attention on the heart's regenerative capabilities. In 2011, a team led by Dr. Eric Olson, chairman of , and Dr. Sadek demonstrated that within three weeks of removing 15 percent of the newborn mouse heart, the organ was able to completely grow back the lost tissue, and as a result looked and functioned normally.

In the latest investigation, UTSW researchers found that hearts of young rodents mounted a robust regenerative response following myocardial infarction, but this restorative activity only occurs during the first week of life. They then discovered that a microRNA called miR-15 disables the regenerative capacity after one week, but when miR-15 is blocked, the regenerative process can be sustained much longer.

"It is a fresh perspective on an age-old problem," said Dr. Olson, director of the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer, and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology who is a co-corresponding author of the PNAS study. "We're encouraged by this initial finding because it provides us with a therapeutic opportunity to manipulate the heart's regenerative potential."

Further research will be needed to optimize the ways in which medical scientists, and eventually clinicians, may be able to control this regenerative process.

"This may well be the beginning of a new era in heart regeneration biology," Dr. Sadek said. "Our research provides hope that reawakening the regenerative capacity of adult mammalian hearts is within reach."

Explore further: Scientists uncover why the human heart can't regenerate itself

Related Stories

Scientists uncover why the human heart can't regenerate itself

August 9, 2011
Stem cell researchers at UCLA have uncovered for the first time why adult human cardiac myocytes have lost their ability to proliferate, perhaps explaining why the human heart has little regenerative capacity.

Newly discovered heart stem cells make muscle and bone

December 1, 2011
Researchers have identified a new and relatively abundant pool of stem cells in the heart. The findings in the December issue of Cell Stem Cell, a Cell Press publication, show that these heart cells have the capacity for ...

Researchers use microRNAs to induce regeneration of heart tissue

December 6, 2012
(Medical Xpress)—A research team working at Italy's International Centre for Genetic Engineering and Biotechnology has succeeded in causing heart tissue to regenerate by introducing two microRNAs into damaged mice hearts. ...

Cardiologists identify mechanism that makes heart disease worse in diabetics

March 1, 2012
UT Southwestern Medical Center cardiologists have uncovered how a specific protein's previously unsuspected role contributes to the deterioration of heart muscle in patients with diabetes. Investigators in the mouse study ...

Recommended for you

Green tea ingredient may ameliorate memory impairment, brain insulin resistance, and obesity

July 28, 2017
A study published online in The FASEB Journal, involving mice, suggests that EGCG (epigallocatechin-3-gallate), the most abundant catechin and biologically active component in green tea, could alleviate high-fat and high-fructose ...

Manipulating a type of brain cell gets weight loss results in mice

July 28, 2017
A new study has found something remarkable: the activation of a particular type of immune cell in the brain can, on its own, lead to obesity in mice. This striking result provides the strongest demonstration yet that brain ...

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.