Genome wide study identifies genetic variants associated with childhood obesity

April 7, 2013, Wellcome Trust Sanger Institute
Juan Carreño de Miranda‎'s "La monstrua desnuda" (The Nude Monster) painting.

Researchers have identified four genes newly associated with severe childhood obesity. They also found an increased burden of rare structural variations in severely obese children.

The team found that structural variations can delete sections of DNA that help to maintain protein receptors known to be involved in the regulation of weight. These receptors are promising targets for the development of against obesity.

As one of the major affecting modern societies, obesity has increasingly received public attention. , behavior and environment, all contribute to the development of obesity.

Children with severe obesity are more likely to have a strong . This study has enhanced understanding of how both common and rare variants around specific genes and are involved in severe .

"We've known for a long time that changes to our genes can increase our risk of obesity. For example, the gene FTO has been unequivocally associated with BMI, obesity and other obesity-related traits," says Dr Eleanor Wheeler, first author from the Wellcome Trust Sanger Institute. "In our study of severely , we found that variations in or near two of the newly associated genes seem to have a comparable or greater effect on obesity than the : PRKCH and RMST."

The team found that different genes can be involved in severe childhood obesity compared to obesity in adults.

Rare in one of the newly associated genes, LEPR, are known to cause a severe form of early onset obesity. The team identified a more common variant in this gene, found in 6 per cent of the population, that can increase a person's risk of obesity. This finding is an example of where rare and more common variations around the same gene or region can influence the risk of severe obesity.

Some of the children in this study had an increased number of structural variations of their DNA that delete G-protein coupled receptors, important receptors in the regulation of weight. These are key targets for current drug development and may have potential therapeutic implications for obesity.

"Some children will be obese because they have severe mutations, but our research indicates that some may have a combination of severe mutations and milder acting variants that in combination contribute to their obesity," says Professor Sadaf Farooqi, co-lead author from the University of Cambridge. "As we uncover more and more variants and genetic links, we will gain a better basic understanding of obesity, which in turn will open doors to areas of clinically relevant research."

As part of the UK10K project the team are now exploring all the genes of 1000 children with severe obesity in whom a diagnostic mutation has not been found. This work will find new severe mutations that may explain the causes of obesity in other children.

"Our study adds evidence that a range of both rare and common genetic variants are responsible for severe childhood obesity," says Dr Inȇs Barroso, co-lead author from the Wellcome Trust Sanger Institute. "This work brings us a step closer to understanding the biology underlying this severe form of childhood obesity and providing a potential diagnosis to the children and their parents."

Explore further: Largest-ever genome-wide study identifies genes for common childhood obesity

More information: Eleanor Wheeler, Ni Huang, Elena G Bochukova, Julia M Keogh, Sarah Lindsay, Sumedha Garg, Elana Henning, Hannah Blackburn, Ruth J F Loos, Nick J Wareham, Stephen O'Rahilly, Matthew E Hurles, Inês Barroso & I Sadaf Farooqi (2013) 'Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity.' Advance Online Publication (AOP) on Nature Genetics's website on 7 April doi:10.1038/ng.2607

Related Stories

Largest-ever genome-wide study identifies genes for common childhood obesity

April 8, 2012
Genetics researchers have identified at least two new gene variants that increase the risk of common childhood obesity.

Study finds strong genetic component to childhood obesity

March 26, 2013
Previous research has shown that obesity runs in families, and twin studies suggest that this is largely due to genetic factors, with heritability estimates over 50%. 32 genes have been identified as risk factors for obesity ...

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.