Nanokicking stem cells to open for new generation of orthopaedics

April 5, 2013, University of Glasgow
Nanokicking stem cells to open for new generation of orthopaedics
Pre-'nanokicked' stem cells.

(Medical Xpress)—New research has shown that it is possible to grow new bone by "nanokicking" stem cells 1,000 times per second using high frequency vibrations.

This new technique is cheaper and easier to implement than current technologies and it is hoped that it may lead to new therapies for orthopaedic conditions such as spinal , osteoporosis and stress fractures.

Mesenchymal stem cells (MSC) are naturally produced by the human body and have the potential to differentiate into a range of specialised cell types such as bone, , ligament, tendon and muscle. Scientists can isolate the and, by replicating environment cues that occur naturally within the body, grow and new tissue in the laboratory.

However, getting stem cells to differentiate correctly is notoriously difficult and current methods rely on expensive and highly engineered materials or complex cocktails of chemicals.

The team, led by researchers at the University of Glasgow, hope that nanokicking may lead to a in the way that we grow new bone. This research also paves the way for future links with rehabilitation engineers in the National Spinal Injuries Unit (Southern General Hospital, Glasgow) to help optimise therapy starting to be provided to patients with spinal injuries.

‌The new technique makes use of that fact that, when individual bone cells stick together to form new , the cell membranes of each cell vibrate as they adhere. It is thought that vibrating the stem cells at this frequency encourages 'communication' between the cells and promotes bone formation. Scientists can replicate this vibration by 'kicking' the stem cells in the lab around 5-30 nanometres in distance 1,000 times a second.

The team measured the strength and frequency of the kicks using an incredibly precise measuring technique called laser interferometry which amongst other things is used to detect tiny ripples in space-time caused by gravitational waves. This project brings together cell engineers, Prof Adam Curtis and Dr Matthew Dalby at the University of Glasgow, and astrophysicist, Dr Stuart Reid at the University of the West of Scotland, in a unique collaboration of very different disciplines.

Dr Matt Dalby from the Centre for Cell Engineering at the University of Glasgow said: "This new observation provides a simple method of converting adult stem cells from the bone marrow into bone-making cells on a large scale without the use of cocktails of chemicals or recourse to challenging and complex engineering.

"Multidisciplinary research is tricky as researchers need to learn new scientific languages, however, this collaboration between cell biologists and astrophysicists – an unlikely pairing – has yielded new insight as to how bone stem cells work. We look forwards to working with the rehabilitation engineers; this will provide us with new challenges, but challenges that we welcome.

Dr Stuart Reid, of the University of the West of Scotland's Thin Film Centre, said: "Linking stem cell research with expertise from the field of gravitational wave astronomy, where we have developed instrumentation that can measure length changes almost million times smaller than the diameter of a proton, have enabled this unique research field to emerge."

Dr Sylvie Coupaud, from the Department of Biomedical Engineering at the University of Strathclyde, said: "Movement is life; inactivity is a killer. Exercise is effective for maintaining bone health, but patients with reduced mobility typically have limited options for exercise and are at risk of developing brittle bones (osteoporosis) and associated fractures.

"Vibration therapy could be applied to stimulate and maintain bone health in these patients, as an alternative to traditional exercise. In the next phase of this bench-to-bedside research, parameters of vibration that have been shown by Dalby and Reid to successfully stimulate the development of in the lab can be scaled up for testing in patients to quantify their bone-stimulating effects in whole bones."

Explore further: Stem cell treatment may offer option for broken bones that don't heal

Related Stories

Stem cell treatment may offer option for broken bones that don't heal

June 5, 2011
Researchers at the University of North Carolina at Chapel Hill School of Medicine have shown in an animal study that transplantation of adult stem cells enriched with a bone-regenerating hormone can help mend bone fractures ...

New method for creating long-lived stem cells used for bone replacement

December 4, 2012
Human mesenchymal stem cells (hMSCs) can develop into bone cells and are useful for tissue engineering and regeneration. However, when grown in the laboratory they quickly lose their ability to continue dividing and they ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

carlos_angulo_1654
not rated yet Apr 05, 2013
HOW MANY MORE GODDAMN YEARS AM I GOING TO BE A QUADRAPLEGIC CRIPPLE FOR? I AM GETTING SICK OF THIS BS, I WANNA WALK AGAIN. HURRY THE HELL UP, QUIT RESEARCHING CURES FOR ANAL WARTS OR SOMETHING FOR GOD SAKES.
Sanescience
not rated yet Apr 06, 2013
A bit non sequitur, but:
"precise measuring technique called laser interferometry which amongst other things is used to detect tiny ripples in space-time caused by gravitational waves"

Not yet they haven't!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.