Professor finds neuroscience provides insights into brains of complex and adaptive leaders

April 30, 2013 by Stephanie Skordas, Wake Forest University

(Medical Xpress)—Wake Forest University's Sean Hannah and a team of researchers have found measuring activity in the prefrontal cortex of the brain can help assess that person's potential for leadership –which could have a big impact on how future leaders are tested and trained.

"This study represents a fusion of the leadership and neuroscience fields, and this fusion can revolutionize approaches to assessing and developing leaders," says Hannah, the Tylee Wilson Chair in and professor of management at the Wake Forest University School of Business. Hannah is lead author of the paper in the May 2013 Journal of Applied Psychology titled, "The Psychological and Neurological Bases of Leader Self-Complexity and Effects on Adaptive Decision-Making."

Hannah and four colleagues tested 103 young military leaders between the ranks of officer cadet and major at a U.S. Army base on the east coast. They administered psychological exams to assess the complexity of leaders' identities, and neurological exams to assess the complexity of soldiers' . For the brain tests, the researchers attached quantitative electroencephalogram (qEEG) electrodes to 19 areas of the soldier's scalp.

Hannah and his fellow researchers wanted to know if great leaders had more complex brains – measured by the electrodes which reported which were firing together at the same time. A low complex brain shows more areas of the brain operating at the same time at the same electrical amplitude and frequency – which suggests those areas converge to process the same task leaving fewer brain resources for other tasks and processes. It's a process called "phase lock."

But in high complex brains, the are much more different and varied – which suggests more of the brains resources are available at any one time to handle other situations or tasks.

"Think of it as a single core versus a multicore computer's (CPU)," Hannah says. "A multicore CPU can multitask because one core can process a task while the other CPU cores remain free to process new tasks. More complex brains are also more efficient in locking together only the brain resources needed to process a task and then efficiently releasing them when no longer needed."

The study showed the high complex brains of the great leaders had a different "landscape." The scans showed more differentiated activation patterns in the frontal and prefrontal lobes of leaders who demonstrated greater decisiveness, adaptive thinking and positive action orientation in the experiment.

"Further, individuals who have developed richer and more elaborate self-concepts as leaders were found to be more complex and adaptable," Hannah says. "These findings have important implications for identifying and developing leaders who can lead effectively in today's changing, dynamic, and often volatile organizational contexts."

The researcher team suggests that once they validate neurological profiles of leaders with high complex brains, they will be able to use established techniques like neuro-feedback to enhance these leadership skills in others. Neuro-feedback has been successfully used with elite athletes, concert musicians and financial traders in their training. These profiles can also be used to assess leaders and track their development over time.

These findings have relevance to the WFU Schools of Business' new student development framework, which focuses on developing practical wisdom, strategic thinking and critical thinking skills, along with the ability to embrace complexity and ambiguity.

Hannah's co-authors include Pierre Balthazard, dean of the School of Business at Saint Bonaventure University; David A. Waldman, professor of business at Arizona State University; Peter L. Jennings, of the Center for the Army Profession and Ethic at West Point; and Robert W. Thatcher of the University of South Florida.

This research team is at the forefront of applying neuroscience to study effective leadership. The team previously published a 2012 paper in the Leadership Quarterly, which identified unique brain functioning in who are seen by their followers as highly inspirational and charismatic.

Explore further: Adaptable leaders may have best brains for the job, study finds

Related Stories

Adaptable leaders may have best brains for the job, study finds

April 10, 2013
Effective leaders' brains may be physically "wired" to lead, offering the promise of more precise identification and training, according to studies of U.S. Army officers published by the American Psychological Association.

Recommended for you

New technique helps uncover changes in ALS neurons

June 22, 2018
Northwestern Medicine scientists have discovered that some neurons affected by amyotrophic lateral sclerosis (ALS) display hypo-excitability, using a new method to measure electrical activity in cells, according to a study ...

Broken shuttle may interfere with learning in major brain disorders

June 22, 2018
Unable to carry signals based on sights and sounds to the genes that record memories, a broken shuttle protein may hinder learning in patients with intellectual disability, schizophrenia, and autism.

Watching stem cells repair spinal cord in real time

June 22, 2018
Monash University researchers have restored movement and regenerated nerves using stem cells in zebra fish where the spinal cord is severely damaged.

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

Waking up is hard to do: Prefrontal cortex implicated in consciousness

June 21, 2018
Philosophers have pondered the nature of consciousness for thousands of years. In the 21st century, the debate over how the brain gives rise to our everyday experience continues to puzzle scientists. To help, researchers ...

Researchers find mechanism behind choosing alcohol over healthy rewards

June 21, 2018
A new study links molecular changes in the brain to behaviours that are central in addiction, such as choosing a drug over alternative rewards. The researchers have developed a method in which rats learn to get an alcohol ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.