Hitting 'reset' in protein synthesis restores myelination, suggests new treatment for misfolded protein diseases

April 26, 2013 by Llen Goldbaum, University at Buffalo
Hitting 'reset' in protein synthesis restores myelination

(Medical Xpress)—A potential new treatment strategy for patients with Charcot-Marie-Tooth disease is on the horizon, thanks to research by neuroscientists now at the University at Buffalo's Hunter James Kelly Research Institute and their colleagues in Italy and England.

The institute is the research arm of the Hunter's Hope Foundation, established in 1997 by Jim Kelly, Buffalo Bills Hall of Fame quarterback, and his wife, Jill, after their infant son Hunter was diagnosed with Krabbe Leukodystrophy, an inherited fatal disorder of the nervous system. Hunter died in 2005 at the age of eight. The institute conducts research on myelin and its related diseases with the goal of developing new ways of understanding and treating conditions such as Krabbe disease and other .

Charcot-Marie-Tooth or CMT disease, which affects the peripheral nerves, is among the most common of hereditary neurological disorders; it is a disease of myelin and it results from misfolded proteins in cells that produce myelin.

The new findings sere published online earlier this month in The Journal of Experimental Medicine and are available online.

They may have relevance for other diseases that result from misfolded proteins, including Alzheimer's disease, Parkinson's, multiple sclerosis, Type 1 diabetes, cancer and .

The paper shows that missteps in translational homeostasis, the process of regulating new so that cells maintain a precise balance between lipids and proteins, may be how some in CMT cause neuropathy.

CMT neuropathies are common, hereditary and progressive; in severe cases, patients end up in wheelchairs. These diseases significantly affect quality of life but not longevity, taking a major toll on patients, families and society, the researchers note.

"It's possible that our finding could lead to the development of an effective treatment not just for CMT neuropathies but also for other diseases related to misfolded proteins," says Lawrence Wrabetz, MD, director of the institute and professor of neurology and biochemistry in UB's School of Medicine and Biomedical Sciences and senior author on the paper. Maurizio D'Antonio, of the Division of Genetics and Cell Biology of the San Raffaele Scientific Institute in Milan is first author; Wrabetz did most of this research while he was at San Raffaele, prior to coming to UB.

The research finding centers around the synthesis of misfolded proteins in Schwann cells, which make myelin in nerves. Myelin is the crucial fatty material that wraps the axons of neurons and allows them to signal effectively. Many CMT neuropathies are associated with mutations in a gene known as P0, which glues the wraps of myelin together. Wrabetz has previously shown in experiments with transgenic mice that those mutations cause the myelin to break down, which in turn, causes degeneration of and wasting of muscles.

When cells recognize that the misfolded proteins are being synthesized, cells respond by severely reducing protein production in an effort to correct the problem, Wrabetz explains. The cells commence again when a protein called Gadd34 gets involved.

"After cells have reacted to, and corrected, misfolding of proteins, the job of Gadd34 is to turn protein synthesis back on," says Wrabetz. "What we have shown is that once Gadd34 is turned back on, it activates synthesis of proteins at a level that's too high—that's what causes more problems in myelination.

"We have provided proof of principle that Gadd34 causes a problem with translational homeostasis and that's what causes some neuropathies," says Wrabetz. "We've shown that if we just reduce Gadd34, we actually get better myelination. So, leaving protein synthesis turned partially off is better than turning it back on, completely."

In both cultures and a transgenic mouse model of CMT neuropathies, the researchers improved myelin by reducing Gadd34 with salubrinal, a small molecule research drug. While salubrinal is not appropriate for human use, Wrabetz and colleagues at UB and elsewhere are working to develop derivatives that are appropriate.

"If we can demonstrate that a new version of this molecule is safe and effective, then it could be part of a new therapeutic strategy for CMT and possibly other misfolded protein diseases as well," says Wrabetz.

And while CMT is the focus of this particular research, the work is helping scientists at the Hunter James Kelly Research Institute enrich their understanding of myelin disorders in general.

"What we learn in one disease, such as CMT, may inform how we think about toxins for others, such as Krabbe's," Wrabetz says. "We'd like to build a foundation and answer basic questions about where and when toxicity in diseases begin."

The misfolded protein diseases are an interesting and challenging group of diseases to study, he continues. "CMT, for example, is caused by mutations in more than 40 different genes," he says. "When there are so many different genes involved and so many different mechanisms, you have to find a unifying mechanism: this problem of Gadd34 turning protein synthesis on at too high a level could be one unifying mechanism. The hope is that this proof of principle applies to more than just CMT and may lead to improved treatments for Alzheimer's, Parkinson's, Type 1 diabetes and the other diseases caused by misfolded proteins."

Explore further: Mice point to a therapy for Charcot-Marie-Tooth disease

Related Stories

Mice point to a therapy for Charcot-Marie-Tooth disease

August 2, 2011
VIB researchers have developed a mouse model for Charcot-Marie-Tooth (CMT) neuropathy, a hereditary disease of the peripheral nervous system. They also found a potential therapy for this incurable disease. The treatment ...

Inproved repair to damage of the peripheral nervous system

June 15, 2012
Researchers from the Peninsula College of Medicine and Dentistry, University of Exeter, in collaboration with colleagues from Rutgers University, Newark and University College London, have furthered understanding of the mechanism ...

New measurement tool for clinical trials to help children with Charcot-Marie-Tooth disease

May 7, 2012
(Medical Xpress) -- An international study led by the University of Sydney and published in the Annals of Neurology has the potential to improve the design of clinical trials for the treatment of Charcot-Marie-Tooth disease, ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.