Mice point to a therapy for Charcot-Marie-Tooth disease

August 2, 2011, VIB (the Flanders Institute for Biotechnology)

VIB researchers have developed a mouse model for Charcot-Marie-Tooth (CMT) neuropathy, a hereditary disease of the peripheral nervous system. They also found a potential therapy for this incurable disease. The treatment not only halted the damage to the nerves and the atrophy of the muscles, it even succeeded in reversing the symptoms.

The research was conducted under supervision of Wim Robberecht en Ludo Van Den Bosch from VIB-K.U.Leuven, in collaboration with the team of Vincent Timmerman at VIB-University of Antwerp. The study was published in .

CMT: a collection of neuropathies

Charcot-Marie-Tooth (CMT) disease is the name for a collection of hereditary disorders and affects approximately one in 2,500 individuals, making it the most common inherited disorder of the . CMT is characterized by loss of muscle tissue due to denervation and by sensory abnormalities, both predominantly in feet and legs but also in the hands and arms in advanced stages of the disease. Persons with CMT can be affected moderately to quite severely. It is presently not possible to cure or prevent CMT, which affects both children and adults. Research into the molecular biological process leading to CMT is important, because it contributes to the development of good diagnosis and offers possible treatments.

Earlier work by VIB researchers showed that some CMT patients have mutations in HSPB1, a gene coding for the 27 kDa small B1, a protein that plays a role in many stress-related in the body. Until now, it was unclear how mutations in HSPB1 could lead to degeneration of the nerve bundles and to muscular weakness.

Mouse model for CMT

The core of the study by Constantin van Outryve d'Ydewalle consists of the construction of a mouse model for CMT. The researchers expressed the mutated human HSPB1 gene in mouse neurons. The mouse model develops motor symptoms, and weakness, foot deformities and steppage gait, all very similar to symptoms observed in affected individuals. Furthermore, the mice develop sensory problems that also occur in CMT patients. Pathological examination of the nerves of the CMT mice shows that the contact between the nerve endings and muscles is disturbed.

Axonal transport deficits

The CMT mice provide the unique possibility to isolate and culture affected nerve cells, making it possible to investigate what exactly goes wrong in the sick nerves. It was discovered that the transport of mitochondria (the cellular power plants) within the axons is severely disturbed in the neurons from symptomatic CMT mice, most likely because the tracks along which the mitochondria are transported (microtubules) are damaged. This could lead to a chronic lack of sufficient mitochondria and other transported cargoes at the nerve endings, causing the nerves to degenerate.

Possible treatment of CMT by HDAC6 inhibitors

These new insights also open possibilities for treatment, because the mitochondrial transport in nerve fibers is known to be affected by tubulin deacetylation, a posttranslational modification of the building blocks of microtubules catalyzed by histone deacetylase 6 (HDAC6). Inhibitors of HDAC6 do not only reverse the axonal transport deficits in vitro, treatment of the CMT mice with HDAC6 inhibitors also halts the damage to the nerves and even succeeds in reversing the symptoms, most likely by muscle reinnervation. The most specific therapeutic molecule used in this study (Tubastatin A) was made by Alan Kozikowski from the University of Illinois at Chicago (USA).

Mouse medicine is not the same as human medicine

There is still a long way to go before these drugs will become available for patients. Many experimental drugs – even those that are successful in animal models – fail during clinical trials due to problems with safety or the lack of therapeutic effectiveness. Still, the results of this study are important not only because of the CMT that replicates the symptoms of the human disease; it also opens perspectives for possible new treatments of an incurable disease.

Other diseases?

Reduced axonal transport in neurons is also observed in other neurodegenerative or neurological diseases, opening the door for further investigations into the effects of this new therapeutic strategy in other diseases. Further scientific research is crucial to solve this issue.

Explore further: Scientists solve mystery of nerve disease genes

Related Stories

Scientists solve mystery of nerve disease genes

July 4, 2011
For several years, scientists have been pondering a question about a genetic disease called Charcot-Marie-Tooth (CMT) disease type 2D: how can different types of mutations, spread out across a gene, produce the same condition?

Recommended for you

Regrowing dental tissue with stem cells from baby teeth

September 11, 2018
Sometimes kids trip and fall, and their teeth take the hit. Nearly half of children suffer some injury to a tooth during childhood. When that trauma affects an immature permanent tooth, it can hinder blood supply and root ...

The starch risk to teeth

August 7, 2018
An examination of research on oral health, commissioned by the World Health Organisation, has indicated that for oral health we should stick to whole grain carbohydrates and avoid processed ones, especially if sweet.

Experts question benefits of fluoride-free toothpaste

August 7, 2018
Dental health experts worry that more people are using toothpaste that skips the most important ingredient—fluoride—and leaves them at a greater risk of cavities.

Researchers discover cellular messengers communicate with bacteria in the mouth

May 8, 2018
A new UCLA-led study provides clear evidence that cellular messengers in saliva may be able to regulate the growth of oral bacteria responsible for diseases, such as periodontitis and meningitis.

Drug-filled, 3-D printed dentures could fight off infections

April 25, 2018
Nearly two-thirds of the U.S. denture-wearing population suffer frequent fungal infections that cause inflammation, redness and swelling in the mouth.

Bacteria boost antifungal drug resistance in severe childhood tooth decay

April 25, 2018
Early childhood caries, a form of severe tooth decay affecting toddlers and preschoolers, can set children up for a lifetime of dental and health problems. The problem can be significant enough that surgery is the only effective ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.