Increased stability of a misfolded protein linked to age of onset of common form of motor neuron disease

April 22, 2013
Figure 1: TDP-43 (red) in motor neurons in a patient with ALS (right) compared with a normal motor neuron cell (left). Credit: 2013 S. Watanabe et al., RIKEN Brain Science Institute

Neurodegenerative diseases are characterized by the aggregation of misfolded proteins, which accumulate to form insoluble clumps within or around nerve cells. In the adult motor neuron disease amyotrophic lateral sclerosis (ALS), for example, such aggregations are formed by misfolding of the TDP-43 protein (Fig. 1). The mutation responsible for the inherited form of ALS is known to originate in the gene encoding the TDP-43 protein, but the relationship between the biochemical properties of TDP-43 and the progression of ALS has been unclear.

New research by Koji Yamanaka and colleagues from the Laboratory for at the RIKEN Brain Science Institute has now revealed that increased stability of mutant TDP-43 is associated with earlier onset of ALS.

Yamanaka and his colleagues isolated the human TDP-43 gene and used genetic engineering to introduce seven different mutations that have previously been identified in patients with inherited ALS. They then introduced the mutated genes into neurons growing in culture dishes in order to induce the cells to synthesize the mutated proteins.

They found that the mutated versions of TDP-43 were far more stable than the normal form, with half-lives up to four times that of the normal protein. This increased stability also made the mutant TDP-43 molecules more toxic to the cells.

The researchers then screened the clinical information of 81 patients with the inherited form of ALS to determine whether the stability of the mutated protein is related to the age of disease onset. The results showed that patients carrying TDP-43 mutations with a longer half-life developed the disease at an earlier age.

Misfolded proteins are normally recognized and targeted for destruction by a called the proteasome before they can cause . Yamanaka's group found that stabilized TDP-43 inhibit activity, thus adding to the growing body of evidence that this clearing mechanism fails in . They also found that stabilized TDP-43 protein loses the ability to control its own mRNA transcripts, thereby further accelerating its accumulation.

The cell culture experiments provide a new model that can be used to control the stability of TDP-43, and which could provide further insights into the importance of protein stability for the mechanisms of disease development and progression.

"Elucidating the mechanisms and consequence of stabilization will provide a mechanistic view of how motor neuron degeneration is initiated in ALS," says Yamanaka. "We are now looking at the mechanisms of toxicity, and the therapeutic means to ameliorate neuron death."

Explore further: Disease progression halted in rat model of Lou Gehrig's disease

More information: Watanabe, S. et al. Accelerated disease onset with stabilized familial Amyotrophic Lateral Sclerosis (ALS)-linked mutant TDP-43 proteins. The Journal of Biological Chemistry 288, 3641–3654 (2013). dx.doi.org/10.1074/jbc.M112.433615

Related Stories

Disease progression halted in rat model of Lou Gehrig's disease

December 12, 2011
Amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease) is an incurable adult neurodegenerative disorder that progresses to paralysis and death. Genetic mutations are the cause of disease in 5% of patients ...

Potential new drug target in Lou Gehrig's disease

November 14, 2011
Two proteins conspire to promote a lethal neurological disease, according to a study published online this week in the Journal of Experimental Medicine.

A drug-screening platform for ALS

August 2, 2012
A research group at the Center for iPS Cell Research and Application (CiRA) at Japan's Kyoto University has successfully recapitulated amyotrophic lateral sclerosis (ALS)-associated abnormalities in motor neurons differentiated ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.