Completion of the zebrafish reference genome yields strong comparisons with the human genome

April 17, 2013

Researchers demonstrate today that 70 per cent of protein-coding human genes are related to genes found in the zebrafish and that 84 per cent of genes known to be associated with human disease have a zebrafish counterpart. Their study highlights the importance of zebrafish as a model organism for human disease research.

The team developed a high-quality annotated zebrafish to compare with the human reference genome. Only two other large genomes have been sequenced to this high standard: the human genome and the . The completed zebrafish genome will be an essential resource that drives the study of gene function and disease in people.

At first glance, Zebrafish may seem to be a strange comparator to humans, but like us they are vertebrates and we share a . They are remarkably biologically similar to people and share the majority of the same genes as humans, making them an important model for understanding how genes work in health and disease.

"Our aim with this project, like with all biomedical research, is to improve human health," says Dr Derek Stemple, senior author from the Wellcome Trust Sanger Institute. "This genome will allow researchers to understand how our genes work and how genetic variants can cause disease in ways that cannot be easily studied in humans or other organisms."

Zebrafish research has already led to biological advances in cancer and heart disease research, and is advancing our understanding of muscle and . Zebrafish have been used to verify the causal gene in muscular dystrophy disorders and also to understand the evolution and formation of or skin cancers.

"The vast majority of have counterparts in the zebrafish, especially genes related to human disease," says Professor Jane Rogers, senior author formerly at The Centre. "This high quality genome is testament to the many scientists who worked on this project and will spur biological research for years to come.

"By modeling these human disease genes in zebrafish, we hope that resources worldwide will produce important biological information regarding the function of these genes and possibly find new targets for drug development."

The zebrafish genome has some unique features, not seen in other vertebrates. They have the highest repeat content in their genome sequences so far reported in any vertebrate species: almost twice as much as seen in their closest relative, the common carp. Also unique to the zebrafish, the team identified chromosomal regions that influence sex determination.

The zebrafish genome contains few pseudogenes - genes thought to have lost their function through evolution - compared to the human genome. The team identified 154 pseudogenes in the zebrafish genome, a fraction of the 13,000 or so pseudogenes found in the human genome.

"To realize the benefits the zebrafish can make to human health, we need to understand the genome in its entirety – both the similarities to the human genome and the differences," says Professor Christiane Nüsslein-Volhard, author and Nobel laureate from the Max Planck Institute for Developmental Biology. "Armed with the genome, we can now better understand how changes to our genomes result in disease."

"This genome will help to uncover the biological processes responsible for common and rare disease and opens up exciting new avenues for disease screening and drug development," adds Dr Stemple.

Explore further: Researchers develop editing toolkit for customizing zebrafish genomes

More information: Kerstin Howe, Matthew D. Clark, et al (2013) "The Zebrafish Reference Genome Sequence and its Relationship to the Human Genome" Advanced online publication in Nature, 17 April - DOI: 10.1038/nature12111

Related Stories

Researchers develop editing toolkit for customizing zebrafish genomes

September 23, 2012
Mayo Clinic researchers and an international team of scientists have developed a highly-efficient means of editing zebrafish genomes for research purposes, eliminating a bottleneck that has stymied biomedical scientists from ...

Long intervening non-coding RNAs play pivotal roles in brain development

December 22, 2011
Whitehead Institute scientists have identified conserved, long intervening non-coding RNAs (lincRNAs) that play key roles during embryonic brain development in zebrafish. They also show that the human versions of the lincRNAs ...

Human genome far more active than thought

September 6, 2012
The GENCODE Consortium expects the human genome has twice as many genes than previously thought, many of which might have a role in cellular control and could be important in human disease. This remarkable discovery comes ...

In a genetic research first, researchers turn zebrafish genes off and on

May 8, 2011
Mayo Clinic researchers have designed a new tool for identifying protein function from genetic code. A team led by Stephen Ekker, Ph.D., succeeded in switching individual genes off and on in zebrafish, then observing embryonic ...

Recommended for you

Gene variant activity is surprisingly variable between tissues

August 21, 2017
Every gene in almost every cell of the body is present in two variants called alleles—one from the mother, the other one from the father. In most cases, both alleles are active and transcribed by the cells into RNA. However, ...

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.