Researchers discover a missing link in signals contributing to neurodegeneration

May 9, 2013

In many neurodegenerative diseases the neurons of the brain are over-stimulated and this leads to their destruction. After many failed attempts and much scepticism this process was finally shown last year to be a possible basis for treatment in some patients with stroke. But very few targets for drugs to block this process are known.

In a new highly detailed study, researchers have discovered a previously missing link between over-stimulation and destruction of , and shown that this might be a target for future drugs. This research, led by the A. I. Virtanen Institute at the University of Eastern Finland in collaboration with scientists from Lausanne University Hospital, University of Lausanne and the company Xigen Pharma AG, was published in the Journal of Neuroscience.

What is this missing link? We have known for years that over-stimulated neurons produce nitric oxide molecules. Although this can activate a signal for destruction of cells, the small amount of nitric oxide produced cannot alone explain the damage to the brain. The team now show that a protein called NOS1AP links the nitric oxide that is produced to the damage that results.. NOS1AP binds an initiator of called MKK3 and also moves within the cell to the source of nitric oxide when cells are over-activated.. The location of these proteins in cells causes them to convert the over-stimulation signal into a cell destruction response. The team designed a chemical that prevents NOS1AP from binding the source of nitric oxide. This reduces the cell destruction response in cells of the brain and as a result it limits in rodents.

This translational research was funded mainly by the Academy of Finland, the European Union and the University of Eastern Finland and used the recently developed high-throughput imaging facilities at the A. I. Virtanen Institute. The researchers hope that continuation of their work could lead to improved treatments for diseases such as stroke, epilepsy and chronic conditions like Alzheimer's disease. As NOS1AP is associated with schizophrenia, diabetes and sudden cardiac death, future research in this area may assist the treatment of a wider range of diseases.

Explore further: Chemical reaction keeps stroke-damaged brain from repairing itself

More information: Li, L. et al. Anita C. Truttmann, and Michael J. Courtney. The nNOS-p38MAPK Pathway Is Mediated by NOS1AP during Neuronal Death, Journal of Neuroscience, 8 May 2013, 33(19):8185-8201; doi:10.1523/JNEUROSCI.4578-12.2013. http://www.jneurosci.org/content/33/19/8185.abstract

Related Stories

Chemical reaction keeps stroke-damaged brain from repairing itself

February 4, 2013
Nitric oxide, a gaseous molecule produced in the brain, can damage neurons. When the brain produces too much nitric oxide, it contributes to the severity and progression of stroke and neurodegenerative diseases such as Alzheimer's. ...

Discovery of nitric oxide delivery mechanism may point to new avenue for treating high blood pressure

November 14, 2012
(Medical Xpress)—Researchers at the University of Virginia School of Medicine have shed new light on blood pressure regulation with the discovery of an unexpected mechanism by which hemoglobin controls the delivery of nitric ...

A coordinated response to cardiac stress

March 1, 2013
Myocardial hypertrophy, a thickening of the heart muscle, is an adaptation that occurs with increased stress on the heart, such as high blood pressure. As the heart muscle expands, it also requires greater blood flow to maintain ...

Bacteria producing nitric oxide extend life in roundworms

February 14, 2013
Nitric oxide, the versatile gas that helps increase blood flow, transmit nerve signals, and regulate immune function, appears to perform one more biological feat— prolonging the life of an organism and fortifying it against ...

Recommended for you

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cellular roots of anxiety identified

July 26, 2017
From students stressing over exams to workers facing possible layoffs, worrying about the future is a normal and universal experience. But when people's anticipation of bad things to come starts interfering with daily life, ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.