Researchers look to mathematics, nature, to understand the immune system and its role in cancer

May 1, 2013
These circular diagrams represent the T cell repertoire of two donors. In the first diagram, only the J segment is displayed, with obvious similarities. The fractal order is observed even as the donors' V and D segments are added. Credit: VCU Massey Cancer Center

Can the patterns in tree branches or the meandering bends in a river provide clues that could lead to better cancer therapies? According to a new study from Virginia Commonwealth University Massey Cancer Center, these self-similar, repeating patterns in nature known as fractals help scientists better understand how the immune system is organized and may one day be used to help improve stem cell transplant outcomes in leukemia patients by predicting the probability of transplant complications.

Recently published in the journal Biology of Blood and Marrow Transplantation, the study led by Amir Toor, M.D., found a fractal pattern in the T cell repertoire of 10 unrelated donors and recipients. T cells are a family of that keep the body healthy by identifying and launching attacks against pathogens such as bacteria, viruses or cancer. T cells have small receptors that recognize antigens, which are proteins on the surface of foreign cells. Once T cells encounter a foreign cell, the antigen fits into the T cell's receptor like a key in a lock and the T cell's deadly arsenal is unleashed on the threat. Once activated, T cells divide into many clones with receptors designed to recognize and guard against that specific pathogen. Over the course of a person's life, he will develop millions of these clonal families, which make up his T cell repertoire and protect him against the many threats that exist in his unique environment.

"The technological advancements of high throughput sequencing have only recently allowed scientists to sequence the genetic material responsible for T cell repertoire. At first glance, the data looks like a chaotic jumble of information," says Toor, a hematologist in the Program and researcher in the Developmental Therapeutics program at VCU Massey Cancer Center. "However, if you study a person's T cell repertoire by analyzing the DNA segments responsible for the various types of T cell receptors, you begin to notice a fractal pattern based on segment usage." Toor and his team are hopeful that this information will give them clues that will help them better understand the recovery of immune function following stem cell transplantation and possibly predict complications such as graft-versus-host disease in transplant recipients.

This model depicts the fractal branching pattern of the D, J and V segments that make up a person's T cell receptors. Credit: VCU Massey Cancer Center

Much like a child can assemble Lego blocks to create a range of different models, humans have evolved a highly efficient process by which a short span of the genome called the T cell receptor locus rearranges gene fragments to create a multitude of different T cell receptor families. In this process, DNA segments known as variable (V), diversity (D) and joining (J) segments are rearranged to create the millions of T cell receptor families, or clones, that the body uses to combat disease. Similar to how the branching pattern of a tree is faithfully replicated from the trunk all the way to its farthest branches, have families that are created from DNA segments branching out from one another to form a shield that provides protection from diseases.

Toor's team looked at the frequency of T cell clones bearing different V, D and J segments in stem donors and recipients following stem cell transplantation. Using a circular diagram designed by researcher Jeremy Meier, B.S., to better visualize the arrangement of the different , the team observed a similar fractal order in the T cell receptor families of the donors. This order was even apparent in donors of different ethnicities living on different continents. In patients who had received a stem cell transplant, Toor found that this pattern was disrupted and the patients displayed a lower level of complexity in their T cell receptor repertoire at three months after transplant, followed by a modest improvement when a full year had elapsed after transplantation.

"Attempting to restore the fractal order of a patient's T repertoire by optimizing the stem cell transplant process could serve as a valuable therapeutic target," says Toor. "Additionally, our findings lend an insight into nature, such that even in complex biological systems bereft of physical form, mathematically determined organization is observed."

Toor and his colleagues plan to continue using high throughput sequencing of patients' T cell receptors to learn more about how the immune system recovers following stem cell transplantation. The team hopes this will give them valuable information about the effectiveness of future stem cell transplant and immunotherapy clinical trials developed in their clinic.

Explore further: Antibodies from rabbits improve survival and relapse outcomes of leukemia and myelodysplasia

More information: www.sciencedirect.com/science/ … ii/S1083879112011408

Related Stories

Antibodies from rabbits improve survival and relapse outcomes of leukemia and myelodysplasia

July 6, 2012
Researchers at Virginia Commonwealth University (VCU) Massey Cancer Center's Bone Marrow Transplant Program have demonstrated that the use of antibodies derived from rabbits can improve the survival and relapse outcomes of ...

Researchers harness the immune system to improve stem cell transplant outcomes

October 1, 2012
A novel therapy in the early stages of development at Virginia Commonwealth University Massey Cancer Center shows promise in providing lasting protection against the progression of multiple myeloma following a stem cell transplant ...

Researchers find way to help donor adult blood stem cells overcome transplant rejection

August 4, 2011
Findings by UT Southwestern Medical Center researchers may suggest new strategies for successful donor adult stem cell transplants in patients with blood cancers such as leukemia, lymphoma and myeloma.

Groundbreaking study that may change transplant practices

November 20, 2012
Researchers from John Theurer Cancer Center at Hackensack University Medical Center, one of the nation's 50 best cancer centers, played an important role in a study published in the New England Journal of Medicine on October ...

No survival advantage with peripheral blood stem cells versus bone marrow

October 19, 2012
(Medical Xpress)—Claudio Anasetti, M.D., chair of the Department of Blood & Marrow Transplant at Moffitt Cancer Center, and colleagues from 47 research sites in the Blood and Marrow Transplant Clinical Trials Network conducted ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.