Scientists weaken HIV infection in immune cells using synthetic agents

May 1, 2013

HIV, the virus that causes AIDS, is notorious for hiding within certain types of cells, where it reproduces at a slowed rate and eventually gives rise to chronic inflammation, despite drug therapy. But researchers at Temple University School of Medicine's Department of Pathology and Laboratory Medicine and Center for Substance Abuse Research (CSAR) recently discovered that synthetic anti-inflammatory substances distantly related to the active ingredient of marijuana may be able to take the punch out of HIV while inside one of its major hideouts – immune cells known as macrophages.

The breakthrough comes at a crucial time in the HIV/AIDS pandemic. "Powerful cocktails have allowed many to live longer," explained Servio H. Ramirez, PhD, Assistant Professor of Pathology and Laboratory Medicine at Temple University School of Medicine (TUSM), and first author on the study. But living longer with HIV means extended exposure to low levels of and associated inflammation. In the (CNS), this is thought to be the underlying cause of HIV-associated neurocognitive disorder (HAND), a spectrum of conditions that is on the rise again after more than a decade of decline following the advent of antiretroviral therapy.

To better understand the connection between inflammation and neurocognitive conditions linked to long-term exposure to HIV, Ramirez and colleagues looked specifically at the CB2 receptor, a protein located on the surface of macrophages. CB2 is a binding site for substances called cannabinoids, the primary active compounds of cannabis (marijuana), and it may play a role in blocking inflammation in the CNS. Unlike its counterpart, the CB1 receptor, which is found primarily on neurons in the brain, CB2 does not mediate the psychoactive effects for which cannabis is popularly known.

Ramirez explained that there has been much pharmacological interest in developing agents that selectively target CB2. Ideally, these compounds would help limit chronic inflammatory responses and would not bind to CB1. The most promising compounds are those derived from THC (tetrahydrocannabinol), the main active substance in cannabis.

The development of such drugs, however, hinges largely on knowing which harbor HIV. Earlier studies suggested that T cells, central components of the immune system, are HIV reservoirs. The Temple team, however, chose to focus on macrophages, which are a type of white blood cell that engulfs and destroys foreign agents.

According to Ramirez and the study's senior investigator, Yuri Persidsky, MD, PhD, Chair of the Department of Pathology and Laboratory Medicine at TUSM, macrophages likely are the primary reservoir for HIV. They are among the first cells to become infected following sexual transmission of the virus, and they are found in every organ of the human body and circulate in the blood. It is currently thought that macrophages may be responsible for introducing HIV into the brain, ultimately initiating HIV-associated cognitive decline.

The scientists landed on their discovery by conducting a series of experiments in a well-established, non-clinical HIV macrophage cell model. They began by treating the HIV-infected cells with one of three different synthetic CB2-activating compounds. The cells were then sampled periodically to measure the activity of an enzyme called reverse transcriptase, which is essential for HIV replication. After seven days, the team found that all three compounds had successfully attenuated HIV replication. The experiments and findings are detailed in the May issue of the Journal of Leukocyte Biology.

The results suggest that selective CB2 agonists could potentially be used in tandem with existing antiretroviral drugs, opening the door to the generation of new drug therapies for HIV/AIDS. The data also support the idea that the human immune system could be leveraged to fight HIV infection.

"Our study suggests that the body's own natural defenses can be made more powerful to fight some of the worst symptoms of HIV," Persidsky explained. He also noted that stimulating CB2 receptors in white blood cells could produce similar benefits against other viral infections.

The new research further highlights the important work being carried out at Temple's Center for Substance Abuse Research (CSAR). "The compounds we had available through CSAR formed an important aspect of this research," Ramirez said.

Persidsky added, "From our perspective we were in a better position for in vitro research. We have interesting models and were able to take advantage of our colleagues' knowledge of receptors and cannabinoids to make a unique contribution."

The team plans next to perform further screening studies using other novel CB2 agonists in parallel with studies that can help uncover the molecular events within the cell that regulate the effect of CB2 on HIV.

Explore further: Synthetic derivatives of THC may weaken HIV-1 infection to enhance antiviral therapies

Related Stories

Synthetic derivatives of THC may weaken HIV-1 infection to enhance antiviral therapies

April 30, 2013
A new use for compounds related in composition to the active ingredient in marijuana may be on the horizon: a new research report published in the Journal of Leukocyte Biology shows that compounds that stimulate the cannabinoid ...

Marijuana-like chemicals inhibit human immunodeficiency virus in late-stage AIDS

March 20, 2012
Mount Sinai School of Medicine researchers have discovered that marijuana-like chemicals trigger receptors on human immune cells that can directly inhibit a type of human immunodeficiency virus (HIV) found in late-stage AIDS, ...

Discovery may help prevent HIV 'reservoirs' from forming

April 17, 2013
Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered how the protein that blocks HIV-1 from multiplying in white blood cells is regulated. HIV-1 is the virus that causes AIDS, and the discovery ...

New book on HIV from Cold Spring Harbor Laboratory Press

December 15, 2011
The worldwide AIDS epidemic makes research on HIV, the disease processes it induces, and potential HIV therapies among the most critical in biomedical science. Furthermore, the basic biology of HIV infections provides a model ...

Kinesin 'chauffeur' helps HIV escape destruction

October 22, 2012
A study in The Journal of Cell Biology identifies a motor protein that ferries HIV to the plasma membrane, helping the virus escape from macrophages.

New HIV-inhibiting protein identified

May 29, 2012
Scientists have identified a new HIV-suppressing protein in the blood of people infected with the virus. In laboratory studies, the protein, called CXCL4 or PF-4, binds to HIV such that it cannot attach to or enter a human ...

Recommended for you

Scientists divulge latest in HIV prevention

July 25, 2017
A far cry from the 1990s "ABC" campaign promoting abstinence and monogamy as HIV protection, scientists reported on new approaches Tuesday allowing people to have all the safe sex they want.

Girl's HIV infection seems under control without AIDS drugs

July 24, 2017
A South African girl born with the AIDS virus has kept her infection suppressed for more than eight years after stopping anti-HIV medicines—more evidence that early treatment can occasionally cause a long remission that, ...

Meds by monthly injection might revolutionize HIV care (Update)

July 24, 2017
Getting a shot of medication to control HIV every month or two instead of having to take pills every day could transform the way the virus is kept at bay.

Candidate AIDS vaccine passes early test

July 24, 2017
The three-decade-old quest for an AIDS vaccine received a shot of hope Monday when developers announced that a prototype triggered the immune system in an early phase of human trials.

Paris spotlight on latest in AIDS science

July 21, 2017
Some 6,000 HIV experts gather in Paris from Sunday to report advances in AIDS science as fading hopes of finding a cure push research into new fields.

Scientists elicit broadly neutralizing antibodies to HIV in calves

July 20, 2017
Scientists supported by the National Institutes of Health have achieved a significant step forward, eliciting broadly neutralizing antibodies (bNAbs) to HIV by immunizing calves. The findings offer insights for HIV vaccine ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.