Wireless signals could transform brain trauma diagnostics

May 14, 2013
Technology developed at UC Berkeley harnesses wireless signals for instant brain diagnostics. Credit: César A. González

New technology developed at the University of California, Berkeley, is using wireless signals to provide real-time, non-invasive diagnoses of brain swelling or bleeding.

The device analyzes data from low energy, , similar to the kind used to transmit radio and mobile signals. The technology, described in the May 14 issue of the journal PLOS ONE, could potentially become a cost-effective tool for medical diagnostics and to triage injuries in areas where access to medical care, especially medical imaging, is limited.

The researchers tested a prototype in a small-scale of healthy adults and brain trauma patients admitted to a military hospital for the Mexican Army. The results from the healthy patients were clearly distinguishable from those with brain damage, and data for bleeding was distinct from those for swelling.

Boris Rubinsky, Professor of the Graduate School at UC Berkeley's Department of Mechanical Engineering, led the research team along with César A. González, a professor at the Instituto Politécnico Nacional, Escuela Superior de Medicina (National Polytechnic Institute's Superior School of Medicine) in Mexico.

"There are large populations in Mexico and the world that do not have adequate access to advanced medical imaging, either because it is too costly or the facilities are far away," said González, "This technology is inexpensive, it can be used in economically disadvantaged parts of the world and in rural areas that lack industrial infrastructure, and it may substantially reduce the cost and change the paradigm of medical diagnostics. We have also shown that the technology could be combined with cell phones for remote diagnostics."

Rubinsky noted that symptoms of serious and brain damage are not always immediately obvious, and for treatment, time is of the essence. For example, the administration of clot-busting medication for certain types of strokes must be given within three hours of the onset of symptoms.

"Some people might delay traveling to a hospital to get examined because it is an hour or more away or because it is exceedingly expensive," said Rubinsky. "If people had access to an affordable device that could indicate whether there is brain damage or not, they could then make an informed decision about making that trip to a facility to get prompt treatment, which is especially important for head injuries."

The researchers took advantage of the characteristic changes in tissue composition and structure in brain injuries. For brain edemas, swelling results from an increase in fluid in the tissue. For brain hematomas, internal bleeding causes the buildup of blood in certain regions of the brain. Because fluid conducts electricity differently than brain tissue, it is possible to measure changes in electromagnetic properties. Computer algorithms interpret the changes to determine the likelihood of injury.

The study involved 46 healthy adults, ages 18 to 48, and eight patients with , ages 27 to 70.

The engineers fashioned two coils into a helmet-like device, fitted over the heads of the study participants. One coil acts as a radio emitter and the other serves as the receiver. Electromagnetic signals are broadcast through the brain from the emitter to the receiver.

"We have adjusted the coils so that if the brain works perfectly, we have a clean signal," said Rubinsky. "Whenever there are interferences in the functioning of the brain, we detect them as changes in the received signal. We can tell from the changes, or 'noises,' what the brain injury is."

Rubinsky noted that the waves are extremely weak, and are comparable to standing in a room with the radio or television turned on.

The device's diagnoses for the brain trauma patients in the study matched the results obtained from conventional computerized tomography (CT) scans.

Interestingly, the tests also revealed some insight into the aging brain.

"With an increase in age, the average electromagnetic transmission signature of a normal human brain changes and approaches that of younger patients with a severe medical condition of hematoma in the brain," said González. "This suggests the potential for the device to be used as an indication for the health of the in older patients in a similar way in which measurements of blood pressure, ECG, cholesterol or other health markers are used for diagnostic of human health conditions."

Explore further: Imaging technique could help traumatic brain injury patients: Mapping technology used to predict long-term effects

Related Stories

Imaging technique could help traumatic brain injury patients: Mapping technology used to predict long-term effects

May 9, 2013
(Medical Xpress)—A new application of an existing medical imaging technology could help predict long-term damage in patients with traumatic brain injury, according to a recent UC San Francisco study.

Mild blast injury causes molecular changes in brain akin to Alzheimer, team says

April 24, 2013
A multicenter study led by scientists at the University of Pittsburgh School of Medicine shows that mild traumatic brain injury after blast exposure produces inflammation, oxidative stress and gene activation patterns akin ...

Research determines how the brain computes tool use

May 8, 2013
(Medical Xpress)—With a goal of helping patients with spinal cord injuries, Jason Gallivan and a team of researchers at Queen's University's Department of Psychology and Centre for Neuroscience Studies are probing deep ...

Brain imaging after mild head injury/concussion can show lesions, study finds

March 12, 2013
Brain imaging soon after mild traumatic brain injury (mTBI) or mild concussion can detect tiny lesions that may eventually provide a target for treating people with mTBI, according to a study released today and that will ...

Single concussion may cause lasting brain damage

March 12, 2013
A single concussion may cause lasting structural damage to the brain, according to a new study published online in the journal Radiology.

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.