Alzheimer's disease mouse models point to a potential therapeutic approach

June 26, 2013, University of California - Santa Barbara
Neurofibrillary tangles, immunostained bright red in pyramidal neurons here, are one of the hallmarks of Alzheimer's disease. Credit: Israel Hernandez, UCSB

Building on research published eight years ago in the journal Chemistry and Biology, Kenneth S. Kosik, Harriman Professor in Neuroscience and co-director of the Neuroscience Research Institute (NRI) at UC Santa Barbara, and his team have now applied their findings to two distinct, well-known mouse models, demonstrating a new potential target in the fight against Alzheimer's and other neurodegenerative diseases.

The results were published online June 4 as the Paper of the Week in the Journal of Biological Chemistry. As a Paper of the Week, Kosik's work is among the top 2 percent of manuscripts the journal reviews in a year. Based on significance and overall importance, between 50 and 100 papers are selected for this honor from the more than 6,600 published each year.

Kosik and his research team focused on tau, a protein normally present in the brain, which can develop into neurofibrillary tangles (NFTs) that, along with plaques containing amyloid-ß protein, characterize Alzheimer's disease. When tau becomes pathological, many phosphate groups attach to it, causing it to become dysfunctional and intensely phosphorylated, or hyperphosphorylated. Aggregations of hyperphosphorylated tau are also referred to as paired helical filaments.

"What struck me most while working on this project was how so many people I'd never met came to me to share their stories and personal anxieties about Alzheimer's disease," said Xuemei Zhang, lead co-author and an assistant specialist in the Kosik Lab. "There is no doubt that finding is the only way to help this fast-growing population." Israel Hernandez, a postdoctoral scholar of the NRI and UCSB's Department of Molecular, Cellular and Developmental Biology, is the paper's other lead co-author.

Treatments for hyperphosphorylated tau, one of the main causes of Alzheimer's disease, do not exist. Current treatment is restricted to drugs that increase the concentration of neurotransmitters to promote signaling between neurons.

However, this latest research explores the possibility that a small class of molecules called diaminothiazoles can act as inhibitors of kinase enzymes that phosphorylate tau. Kosik's team studied the toxicity and immunoreactivity of several diaminothiazoles that targeted two key kinases, CDK5/p25 and GSK3ß, in two Alzheimer's disease mouse models. The investigators found that the compounds can efficiently inhibit the enzymes with hardly any toxic effects in the therapeutic dose range.

Treatment with the lead compound in this study, LDN-193594, dramatically affected the prominent neuronal cell loss that accompanies increased CDK5 activity. Diaminothiazole kinase inhibitors not only reduced tau phosphorylation but also exerted a neuroprotective effect in vivo. In addition to reducing the amount of the paired helical in the mice's brains, they also restored their learning and memory abilities during a fear-conditioning assay.

According to the authors, the fact that treatment with diaminothiazole kinase inhibitors reduced the phosphorylation of tau provides strong evidence that small molecular kinase inhibitor treatment could slow the progression of tau pathology. "Given the contribution of both CDK5 and GSK3ß to tau phosphorylation," said Kosik, "effective treatment of tauopathies may require dual kinase targeting."

Madison Cornwell, a Beckman Scholar with UCSB's Center for Science and Engineering Partnerships who worked in Kosik's lab, added: "As a beginning step, we demonstrated that two of these compounds were successful in clearing the brain of tau tangles in a , but someday inhibitors of these kinases may serve to ameliorate the symptoms of Alzheimer's disease in patients."

Explore further: New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

Related Stories

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

From trauma to tau: Researchers tie brain injury to toxic form of protein

May 29, 2013
University of Texas Medical Branch at Galveston researchers have uncovered what may be a key molecular mechanism behind the lasting damage done by traumatic brain injury.

Transmission of tangles in Alzheimer's mice provides more authentic model of tau pathology

January 15, 2013
Brain diseases associated with the misformed protein tau, including Alzheimer's disease and frontotemporal lobar degeneration with tau pathologies, are characterized by neurofibrillary tangles (NFTs) comprised of pathological ...

Anti-tau drug improves cognition, decreases tau tangles in Alzheimer's disease models

July 19, 2012
While clinical trial results are being released regarding drugs intended to decrease amyloid production - thought to contribute to decline in Alzheimer's disease - clinical trials of drugs targeting other disease proteins, ...

Neuronal activity induces tau release from healthy neurons

February 15, 2013
Researchers from King's College London have discovered that neuronal activity can stimulate tau release from healthy neurons in the absence of cell death. The results published by Diane Hanger and her colleagues in EMBO reports ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.