Brain's 'garbage truck' may hold key to treating Alzheimer's and other disorders

June 27, 2013

In a perspective piece appearing today in the journal Science, researchers at University of Rochester Medical Center (URMC) point to a newly discovered system by which the brain removes waste as a potentially powerful new tool to treat neurological disorders like Alzheimer's disease. In fact, scientists believe that some of these conditions may arise when the system is not doing its job properly.

"Essentially all are associated with the accumulation of cellular waste products," said Maiken Nedergaard, M.D., D.M.Sc., co-director of the URMC Center for Translational Neuromedicine and author of the article. "Understanding and ultimately discovering how to modulate the brain's system for removing toxic waste could point to new ways to treat these diseases."

The body defends the brain like a fortress and rings it with a complex system of gateways that control which molecules can enter and exit. While this "blood-brain barrier" was first described in the late 1800s, scientists are only now just beginning to understand the dynamics of how these mechanisms function. In fact, the complex network of waste removal, which researchers have dubbed the glymphatic system, was only first disclosed by URMC scientists last August in the journal Science Translational Medicine.

The removal of waste is an essential biological function and the lymphatic system – a circulatory network of organs and vessels – performs this task in most of the body. However, the lymphatic system does not extend to the brain and, consequently, researchers have never fully understood what the brain does its own waste. Some scientists have even speculated that these byproducts of where somehow being "recycled" by the brain's cells.

One of the reasons why the glymphatic system had long eluded comprehension is that it cannot be detected in samples of . The key to discovering and understanding the system was the advent of a new called two-photon microscopy which enables scientists to peer deep within the living brain. Using this technology on mice, whose brains are remarkably similar to humans, Nedergaard and her colleagues were able to observe and document what amounts to an extensive, and heretofore unknown, plumbing system responsible for flushing waste from throughout the brain.

The brain is surrounded by a membrane called the arachnoid and bathed in cerebral spinal fluid (CSF). CSF flows into the interior of the brain through the same pathways as the arteries that carry blood. This parallel system is akin to a donut shaped pipe within a pipe, with the inner ring carrying blood and the outer ring carrying CSF. The CSF is draw into brain tissue via a system of conduits that are controlled by a type support cells in the brain known as glia, in this case astrocytes. The term glymphatic was coined by combining the words glia and lymphatic.

The CSF is flushed through the brain tissue at a high speed sweeping excess proteins and other waste along with it. The fluid and waste are exchanged with a similar system that parallels veins which carries the waste out of the brain and down the spine where it is eventually transferred to the and from there to the liver, where it is ultimately broken down.

While the discovery of the glymphatic system solved a mystery that had long baffled the scientific community, understanding how the brain removes waste – both effectively and what happens when this system breaks down – has significant implications for the treatment of neurological disorders.

One of the hallmarks of Alzheimer's disease is the accumulation in the brain of the protein beta amyloid. In fact, over time these proteins amass with such density that they can be observed as plaques on scans of the brain. Understanding what role the glymphatic system plays in the brain's inability to break down and remove beta amyloid could point the way to new treatments. Specifically, whether certainly key 'players' in the glymphatic system, such as astrocytes, can be manipulated to ramp up the removal of waste.

"The idea that 'dirty ' diseases like Alzheimer may result from a slowing down of the glymphatic system as we age is a completely new way to think about neurological disorders," said Nedergaard. "It also presents us with a new set of targets to potentially increase the efficiency of glymphatic clearance and, ultimately, change the course of these conditions."

Explore further: Scientists discover previously unknown cleaning system in brain

Related Stories

Scientists discover previously unknown cleaning system in brain

August 15, 2012
A previously unrecognized system that drains waste from the brain at a rapid clip has been discovered by neuroscientists at the University of Rochester Medical Center. The findings were published online August 15 in Science ...

Scientists find way to image brain waste removal process, may lead to Alzheimer's diagnostic

February 25, 2013
(Medical Xpress)—A novel way to image the entire brain's glymphatic pathway, a dynamic process that clears waste and solutes from the brain that otherwise might build-up and contribute to the development of Alzheimer's ...

Model for brain signaling flawed, new study finds

January 10, 2013
A new study out today in the journal Science turns two decades of understanding about how brain cells communicate on its head. The study demonstrates that the tripartite synapse – a model long accepted by the scientific ...

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

New cell type developed for possible treatment of Alzheimer's and other brain diseases

November 7, 2012
(Medical Xpress)—UC Irvine researchers have created a new stem cell-derived cell type with unique promise for treating neurodegenerative diseases such as Alzheimer's.

Advances in research into Alzheimer's disease

July 9, 2011
Advances in research into Alzheimer's disease: transporter proteins at the blood CSF barrier and vitamin D may help prevent amyloid β build up in the brain

Recommended for you

Lifestyle changes to stave off Alzheimer's? Hints, no proof

July 20, 2017
There are no proven ways to stave off Alzheimer's, but a new report raises the prospect that avoiding nine key risks starting in childhood just might delay or even prevent about a third of dementia cases around the world.

Blood test identifies key Alzheimer's marker

July 19, 2017
A new study led by researchers at Washington University School of Medicine in St. Louis suggests that measures of amyloid beta in the blood have the potential to help identify people with altered levels of amyloid in their ...

Steering an enzyme's 'scissors' shows potential for stopping Alzheimer's disease

July 19, 2017
The old real estate adage about "location, location, location" might also apply to the biochemical genesis of Alzheimer's disease, according to new research from the University of British Columbia.

Brain scans may change care for some people with memory loss

July 19, 2017
Does it really take an expensive brain scan to diagnose Alzheimer's? Not everybody needs one but new research suggests that for a surprising number of patients whose memory problems are hard to pin down, PET scans may lead ...

Can poor sleep boost odds for Alzheimer's?

July 18, 2017
(HealthDay)— Breathing problems during sleep may signal an increased risk for Alzheimer's disease, a trio of studies suggests.

Hearing is believing: Speech may be a clue to mental decline

July 17, 2017
Your speech may, um, help reveal if you're uh ... developing thinking problems. More pauses, filler words and other verbal changes might be an early sign of mental decline, which can lead to Alzheimer's disease, a study suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.