Brain's 'garbage truck' may hold key to treating Alzheimer's and other disorders

June 27, 2013, University of Rochester Medical Center

In a perspective piece appearing today in the journal Science, researchers at University of Rochester Medical Center (URMC) point to a newly discovered system by which the brain removes waste as a potentially powerful new tool to treat neurological disorders like Alzheimer's disease. In fact, scientists believe that some of these conditions may arise when the system is not doing its job properly.

"Essentially all are associated with the accumulation of cellular waste products," said Maiken Nedergaard, M.D., D.M.Sc., co-director of the URMC Center for Translational Neuromedicine and author of the article. "Understanding and ultimately discovering how to modulate the brain's system for removing toxic waste could point to new ways to treat these diseases."

The body defends the brain like a fortress and rings it with a complex system of gateways that control which molecules can enter and exit. While this "blood-brain barrier" was first described in the late 1800s, scientists are only now just beginning to understand the dynamics of how these mechanisms function. In fact, the complex network of waste removal, which researchers have dubbed the glymphatic system, was only first disclosed by URMC scientists last August in the journal Science Translational Medicine.

The removal of waste is an essential biological function and the lymphatic system – a circulatory network of organs and vessels – performs this task in most of the body. However, the lymphatic system does not extend to the brain and, consequently, researchers have never fully understood what the brain does its own waste. Some scientists have even speculated that these byproducts of where somehow being "recycled" by the brain's cells.

One of the reasons why the glymphatic system had long eluded comprehension is that it cannot be detected in samples of . The key to discovering and understanding the system was the advent of a new called two-photon microscopy which enables scientists to peer deep within the living brain. Using this technology on mice, whose brains are remarkably similar to humans, Nedergaard and her colleagues were able to observe and document what amounts to an extensive, and heretofore unknown, plumbing system responsible for flushing waste from throughout the brain.

The brain is surrounded by a membrane called the arachnoid and bathed in cerebral spinal fluid (CSF). CSF flows into the interior of the brain through the same pathways as the arteries that carry blood. This parallel system is akin to a donut shaped pipe within a pipe, with the inner ring carrying blood and the outer ring carrying CSF. The CSF is draw into brain tissue via a system of conduits that are controlled by a type support cells in the brain known as glia, in this case astrocytes. The term glymphatic was coined by combining the words glia and lymphatic.

The CSF is flushed through the brain tissue at a high speed sweeping excess proteins and other waste along with it. The fluid and waste are exchanged with a similar system that parallels veins which carries the waste out of the brain and down the spine where it is eventually transferred to the and from there to the liver, where it is ultimately broken down.

While the discovery of the glymphatic system solved a mystery that had long baffled the scientific community, understanding how the brain removes waste – both effectively and what happens when this system breaks down – has significant implications for the treatment of neurological disorders.

One of the hallmarks of Alzheimer's disease is the accumulation in the brain of the protein beta amyloid. In fact, over time these proteins amass with such density that they can be observed as plaques on scans of the brain. Understanding what role the glymphatic system plays in the brain's inability to break down and remove beta amyloid could point the way to new treatments. Specifically, whether certainly key 'players' in the glymphatic system, such as astrocytes, can be manipulated to ramp up the removal of waste.

"The idea that 'dirty ' diseases like Alzheimer may result from a slowing down of the glymphatic system as we age is a completely new way to think about neurological disorders," said Nedergaard. "It also presents us with a new set of targets to potentially increase the efficiency of glymphatic clearance and, ultimately, change the course of these conditions."

Explore further: Scientists discover previously unknown cleaning system in brain

Related Stories

Scientists discover previously unknown cleaning system in brain

August 15, 2012
A previously unrecognized system that drains waste from the brain at a rapid clip has been discovered by neuroscientists at the University of Rochester Medical Center. The findings were published online August 15 in Science ...

Scientists find way to image brain waste removal process, may lead to Alzheimer's diagnostic

February 25, 2013
(Medical Xpress)—A novel way to image the entire brain's glymphatic pathway, a dynamic process that clears waste and solutes from the brain that otherwise might build-up and contribute to the development of Alzheimer's ...

Model for brain signaling flawed, new study finds

January 10, 2013
A new study out today in the journal Science turns two decades of understanding about how brain cells communicate on its head. The study demonstrates that the tripartite synapse – a model long accepted by the scientific ...

New Alzheimer's research suggests possible cause: The interaction of proteins in the brain

June 19, 2013
For years, Alzheimer's researchers have focused on two proteins that accumulate in the brains of people with Alzheimer's and may contribute to the disease: plaques made up of the protein amyloid-beta, and tangles of another ...

New cell type developed for possible treatment of Alzheimer's and other brain diseases

November 7, 2012
(Medical Xpress)—UC Irvine researchers have created a new stem cell-derived cell type with unique promise for treating neurodegenerative diseases such as Alzheimer's.

Advances in research into Alzheimer's disease

July 9, 2011
Advances in research into Alzheimer's disease: transporter proteins at the blood CSF barrier and vitamin D may help prevent amyloid β build up in the brain

Recommended for you

Rocky start for Alzheimer's drug research in 2018

January 19, 2018
The year 2018, barely underway, has already dealt a series of disheartening blows to the quest for an Alzheimer's cure.

Alzheimer's disease: Neuronal loss very limited

January 17, 2018
Frequently encountered in the elderly, Alzheimer's is considered a neurodegenerative disease, which means that it is accompanied by a significant, progressive loss of neurons and their nerve endings, or synapses. A joint ...

Anxiety: An early indicator of Alzheimer's disease?

January 12, 2018
A new study suggests an association between elevated amyloid beta levels and the worsening of anxiety symptoms. The findings support the hypothesis that neuropsychiatric symptoms could represent the early manifestation of ...

One of the most promising drugs for Alzheimer's disease fails in clinical trials

January 11, 2018
To the roughly 400 clinical trials that have tested some experimental treatment for Alzheimer's disease and come up short, we can now add three more.

Different disease types associated with distinct amyloid-beta prion strains found in Alzheimer's patients

January 9, 2018
An international team of researchers has found different disease type associations with distinct amyloid-beta prion strains in the brains of dead Alzheimer's patients. In their paper published in Proceedings of the National ...

Advances in brain imaging settle debate over spread of key protein in Alzheimer's

January 5, 2018
Recent advances in brain imaging have enabled scientists to show for the first time that a key protein which causes nerve cell death spreads throughout the brain in Alzheimer's disease - and hence that blocking its spread ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.