Study finds novel gene correction model for epidermolysis bullosa

June 6, 2013, University of Minnesota

A research team led by pediatric blood and marrow transplantation experts Mark Osborn, Ph.D. and Jakub Tolar, M.D., Ph.D. from the Masonic Cancer Center, University of Minnesota, have discovered a remarkable new way to repair genetic defects in the skin cells of patients with the skin disease epidermolysis bullosa.

The findings, published today in the journal Molecular Therapy and highlighted in the most recent issue of Nature, represent the first time researchers been able to correct a disease-causing gene in its natural location in the human genome using engineered transcription activator-like effector nucleases.

(EB) is a skin disease caused by . Patients suffering from EB – primarily children - lack the proteins that hold the epidermis and dermis together, which leads to painful blistering and sores. The condition is often deadly. The University of Minnesota is an international leader in the treatment of EB and the research that has led to new treatment approaches.

In their latest work, Osborn and Tolar's team collaborated with genomic engineer Daniel Voytas, Ph.D., of the University of Minnesota's College of Biological Sciences, to engineer transcription activator-like effector nucleases (TALENs) that target the mutation and correct the error in the of patients with the disease. Researchers then reprogrammed these cells to make that can create many different kinds of tissues. These amended cells were then able to produce the missing protein when placed in living skin models.

"These results provide proof of principle for TALEN-based precision gene correction, and it could open the door for more individualized therapeutics," said Osborn, an assistant professor in the University of Minnesota Medical School's Department of Pediatrics Division of Blood and .

By using an unbiased , researchers were able to take a comprehensive approach to TALEN-mapping. This strategy helped identify three other possible locations for future research and potential therapies.

"This is the first time we've been able to seamlessly correct a disease-causing gene in its natural location in the human genome using the TALEN-based approach. This opened up options we did not have before when considering future therapies," said Tolar, director of the University's Stem Cell Institute and an associate professor in the Department of Pediatrics Division of Blood and Marrow Transplantation.

The University of Minnesota and Marrow Transplant team, led by John Wagner, M.D. and Bruce Blazar, M.D., has pioneered bone marrow transplantation as the standard of care for severe EB. Tolar and Osborn hope that the individualized "genome editing" of patient cells will provide the next generation of therapies for EB and other genetic diseases.

Explore further: New findings may help overcome hurdle to successful bone marrow transplantation

Related Stories

New findings may help overcome hurdle to successful bone marrow transplantation

May 28, 2013
Blood diseases such as leukemia, multiple myeloma, and myelodysplasia can develop from abnormal bone marrow cells and a dysfunctional bone marrow microenvironment that surrounds these cells. Until now, researchers have been ...

Scientists 'switch off' defective genes in cure for skin blistering diseases

November 7, 2011
(Medical Xpress) -- Scientists have taken major steps forward to curing severe skin blistering diseases like epidermolysis bullosa which ruin thousands of lives in the UK every year.

Genetic editing shows promise in Duchenne muscular dystrophy

June 4, 2013
Using a novel genetic 'editing' technique, Duke University biomedical engineers have been able to repair a defect responsible for one of the most common inherited disorders, Duchenne muscular dystrophy, in cell samples from ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.