New study on popular prostate cancer protein provides insight into disease progression

June 25, 2013, Cedars-Sinai Medical Center

Researchers at the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute have uncovered for the first time the vital role a popular protein plays in the stroma, the cell-lined area outside of a prostate tumor.

Researchers have long understood the function of the protein, Caveolin-1 (Cav-1), in prostate cancer, including its role in and disease aggressiveness. However, prior to this study, little was known about the role of Cav-1 within the .

The study, published in the Journal of Pathology, found that a decreased level of the Cav-1 protein in the stroma indicated tumor progression—a function opposite to the known role of Cav-1 within a tumor. Inside the tumor, an increased level of this protein signifies . These human tumor findings suggest that patients whose prostate tumor is surrounded by a stroma with decreased levels of the Cav-1 protein may have an overall worse prognosis and a higher chance of disease relapse.

"How a prostate tumor communicates with its microenvironment, or stroma, is a vital process we need to understand to assess the aggressiveness of a patient's disease and potential response to treatment," said Dolores Di Vizio, MD, PhD, associate professor in the Urologic Oncology Research Program and senior investigator of the study. "This research suggests that the cells surrounding a are equally as important as the tumor itself in helping understand the complexity of a man's disease. This early-stage research may provide a new, future marker that may ultimately aid diagnosis and treatment, and personalize prostate cancer therapy."

In addition to understanding the role of Cav-1 in the , researchers discovered that the loss of Cav-1 causes an increase of cholesterol in the stroma. Previous research findings suggest that are related to aggressive prostate cancer, but cholesterol's role had never been evaluated within the stroma.

"Cholesterol has been shown to be a driver of prostate cancer progression," said Di Vizio. "For the first time in research, we found that when levels of Cav-1 decrease in the stroma, both cholesterol and androgens increase. This finding may partly explain a resistance to traditional treatments."

Though the findings are preliminary, the Cedars-Sinai researchers Di Vizio, Michael Freeman, PhD, vice chair of research in the Department of Surgery and professor/director of the Cancer Biology Program at the Samuel Oschin Comprehensive Cancer Institute, and post-doctoral fellows Matteo Morello, PhD, and Sungyong You, PhD, will continue evaluating the role of the Caveolin-1 protein in the stroma and its potential end benefit in patients.

Explore further: Newly identified tumor suppressor provides therapeutic target for prostate cancer

More information: J Pathol. 2013 May 31. doi: 10.1002/path.4217

Related Stories

Newly identified tumor suppressor provides therapeutic target for prostate cancer

April 1, 2013
Scientists at Sanford-Burnham Medical Research Institute (Sanford-Burnham) have identified how an enzyme called PKCζ suppresses prostate tumor formation. The finding, which also describes a molecular chain of events that ...

Hormonal treatment for endometrial cancer does not directly target the malignant cells

June 11, 2013
Progesterone, a female hormone that can be used as a therapy for endometrial cancer, eliminates tumor cells indirectly by binding to its receptor in stromal or connective tissue cells residing in the tumor microenvironment, ...

Ovarian cancer cells hijack surrounding tissues to enhance tumor growth

September 4, 2012
Tumor growth is dependent on interactions between cancer cells and adjacent normal tissue, or stroma. Stromal cells can stimulate the growth of tumor cells; however it is unclear if tumor cells can influence the stroma.

Source of tumor growth in aggressive prostate cancer found

June 17, 2013
Researchers have discovered a molecular switch that explains, at least in part, how some fast-growing prostate cancers become resistant to hormone treatment, a new study conducted in human cell cultures and mice finds. The ...

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.