New research points to potential treatment strategies for multiple sclerosis

June 24, 2013
Myelin, the fatty coating that protects neurons in the brain and spinal cord, is destroyed in diseases such as multiple sclerosis. Researchers have been striving to determine whether oligodendrocytes, the cells that produce myelin, can be stimulated to make new myelin. Using live imaging in zebrafish to track oligodendrocytes in real time, researchers reporting in the June 24 issue of the Cell Press journal Developmental Cell discovered that individual oligodendrocytes coat neurons with myelin for only five hours after they are born. If the findings hold true in humans, they could lead to new treatment strategies for multiple sclerosis. Credit: Developmental Cell, Czopka et al.

Myelin, the fatty coating that protects neurons in the brain and spinal cord, is destroyed in diseases such as multiple sclerosis. Researchers have been striving to determine whether oligodendrocytes, the cells that produce myelin, can be stimulated to make new myelin. Using live imaging in zebrafish to track oligodendrocytes in real time, researchers reporting in the June 24 issue of the Cell Press journal Developmental Cell discovered that individual oligodendrocytes coat neurons with myelin for only five hours after they are born. If the findings hold true in humans, they could lead to new treatment strategies for multiple sclerosis.

"The study could help improve our understanding of the triggers needed to encourage cells to produce myelin," says senior author Dr. David Lyons, of the University of Edinburgh, UK. For example, if scientists could determine what is blocking the cells from making myelin after five hours, they might be able to remove that blockage. Alternatively, treatments could focus on creating more new oligodendrocytes rather than trying to stimulate existing oligodendrocytes.

Dr. Lyons and his team used zebrafish to study the formation of by oligodendrocytes because this laboratory animal is transparent at early stages of its development, which allows investigators to directly observe cells within the organism. It is also known that zebrafish and humans have very similar genes, and these similarities extend to more than 80% of the genes associated with human disease. Zebrafish therefore respond in very similar ways to most drugs used for therapeutic purposes in humans.

"In the future, will be used to identify new genes and drugs that can influence myelin formation and myelin repair," says Dr. Lyons.

Explore further: New drug target identified for multiple sclerosis and Alzheimer's disease

More information: dx.doi.org/10.1016/j.devcel.2013.05.013

Related Stories

New drug target identified for multiple sclerosis and Alzheimer's disease

January 30, 2013
Researchers at Boston University School of Medicine (BUSM) led by Carmela Abraham, PhD, professor of biochemistry, along with Cidi Chen, PhD, and other collaborators, report that the protein Klotho plays an important role ...

Changes in nerve cells may contribute to the development of mental illness

November 28, 2012
Reduced production of myelin, a type of protective nerve fiber that is lost in diseases like multiple sclerosis, may also play a role in the development of mental illness, according to researchers at the Graduate School of ...

Finding challenges accepted view of MS: Unexpectedly, damaged nerve fibers survive

February 6, 2013
(Medical Xpress)—Multiple sclerosis, a brain disease that affects over 400,000 Americans, causes movement difficulties and many neurologic symptoms. MS has two key elements: The nerves that direct muscular movement lose ...

Androgenic hormones could help treat multiple sclerosis, study finds

January 30, 2013
Testosterone and its derivatives could constitute an efficient treatment against myelin diseases such as multiple sclerosis, reveals a study by researchers from the Laboratoire d'Imagerie et de Neurosciences Cognitives. Myelin ...

Researchers discover dynamic behavior of progenitor cells in brain

May 9, 2013
By monitoring the behavior of a class of cells in the brains of living mice, neuroscientists at Johns Hopkins discovered that these cells remain highly dynamic in the adult brain, where they transform into cells that insulate ...

Recommended for you

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.