Finding challenges accepted view of MS: Unexpectedly, damaged nerve fibers survive

February 6, 2013 by David Tenenbaum, University of Wisconsin-Madison
Finding challenges accepted view of MS: Unexpectedly, damaged nerve fibers survive
Spinal-cord tissue from normal (left) and mutant (right) rats. The normal tissue show a thick, effective layer of myelin insulation needed for normal nerve signaling. The mutant rats have no myelin, but surprisingly, the axons (long nerve fibers) remain intact. Credit: Chelsey Smith and Ian Duncan, UW-Madison

(Medical Xpress)—Multiple sclerosis, a brain disease that affects over 400,000 Americans, causes movement difficulties and many neurologic symptoms. MS has two key elements: The nerves that direct muscular movement lose their electrical insulation (the myelin sheath) and cannot transmit signals as effectively. And many of the long nerve fibers, called axons, degenerate.

Many scientists believe that axons are doomed once they lose the insulation, but a new study by graduate student Chelsey Smith and former undergraduate Elizabeth Cooksey in the Journal of Neuroscience shows axons can survive for long periods in rats even after losing myelin.

"This was the first study to demonstrate long-term axon survival after myelin ," says senior author Ian Duncan, a professor in the School of Veterinary Medicine at the University of Wisconsin-Madison.

The mutant rats in the experiment have substantial myelin at first, but by eight weeks the essential myelin insulation is lost. "It was surprising," says Duncan, an expert in MS pathology. "Nine months is a relatively long period in a rat's lifetime, and there wasn't a loss of axons, so the assumption that axons must automatically die without myelin seems incorrect."

Normally, insulating myelin is made by supportive cells called oligodendrocytes that live alongside the axons. Duncan observes that oligodendrocytes and related cells also assist by secreting that neurons may need to survive. "That is just speculation, but in our study, the oligodendrocytes were found in much greater numbers, probably in an attempt to produce more myelin, and we saw an overall increase in growth factor production."

Although oligodendrocytes definitely produce growth factors during early development in the rat, this study identified three neural growth factors that are produced by these in the older animals. "This paper was the first to show that continue to express growth factors in mature animals, and that could be important," Duncan says.

Growth factors are proteins that stimulate a wide range of growth and development, and their absence has been implicated in several neurological diseases. Duncan says more study of growth factors could suggest a route to preventing nerve fiber loss in MS and other myelin diseases.

Although other researchers have found that axons survive in mutant mice that fail to make myelin, Duncan notes that those animals lived only four months. "This survival was more than double that; it's a significant increase."

Scientists have known for decades that axons degenerate and disappear in MS, and that idea is now a major focus of scientific interest. "Much in vogue is the idea that you have to protect axons above and beyond everything else, that MS is not primarily a demyelinating disease, it's primarily an axonal disease," Duncan says. "Our finding shows that it is not absolutely certain that axons will degenerate when they are demyelinated. If we are correct in our speculation, we could potentially protect the axon if we can increase the amount of growth factor being produced by the helper cells."

Explore further: Glial cells assist in the repair of injured nerves

Related Stories

Glial cells assist in the repair of injured nerves

January 28, 2013
When a nerve is damaged, glial cells produce the protein neuregulin1 and thereby promote the regeneration of nerve tissue.

Brain electrical activity spurs insulation of brain's wiring

August 11, 2011
(Medical Xpress) -- Researchers at the National Institutes of Health have discovered in mice a molecular trigger that initiates myelination, the process by which brain cell networks are reinforced with an insulating material ...

Scientists identify inhibitor of myelin formation in the central nervous system

November 20, 2012
Scientists at the Mainz University Medical Center have discovered another molecule that plays an important role in regulating myelin formation in the central nervous system. Myelin promotes the conduction of nerve cell impulses ...

Recommended for you

Brainwaves show how exercising to music bends your mind

February 18, 2018
Headphones are a standard sight in gyms and we've long known research shows listening to tunes can be a game-changer for your run or workout.

To sleep, perchance to forget

February 17, 2018
The debate in sleep science has gone on for a generation. People and other animals sicken and die if they are deprived of sleep, but why is sleep so essential?

Lab-grown human cerebellar cells yield clues to autism

February 16, 2018
Increasing evidence has linked autism spectrum disorder (ASD) with dysfunction of the brain's cerebellum, but the details have been unclear. In a new study, researchers at Boston Children's Hospital used stem cell technology ...

Fragile X syndrome neurons can be restored, study shows

February 16, 2018
Fragile X syndrome is the most frequent cause of intellectual disability in males, affecting one out of every 3,600 boys born. The syndrome can also cause autistic traits, such as social and communication deficits, as well ...

Brain-machine interface study suggests how brains prepare for action

February 16, 2018
Somewhere right now in Pyeongchang, South Korea, an Olympic skier is thinking through the twists and spins she'll make in the aerial competition, a speed skater is visualizing how he'll sneak past a competitor on the inside ...

Humans blink strategically in response to environmental demands

February 16, 2018
If a brief event in our surroundings is about to happen, it is probably better not to blink during that moment. A team of researchers at the Centre for Cognitive Science from Technische Universität Darmstadt published a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.