Ancient viruses that function in early human development may play role in cancer

July 31, 2013, St. Laurent Institute

The St. Laurent Institute, a non-profit medical research institute focused on the systems biology of disease, today announced in a study published in the July edition of Genome Biology, that genetic matter, previously ignored by the scientific community, may play an important role in cancer. The study, "VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer" found that novel non-coding parts of the human genome known as vlincRNAs (very long intergenic, non-coding RNAs) triggered by ancient viruses, participate in the biology of stem cells, and in the development of cancer. Importantly, the group of researchers from U.S., Europe and Russia found that the elimination of these vlincRNAs caused the death of cancer cells.

"Understanding this previously ignored part of the human genome, its role in human development, and how it may be taken over by disease, opens a new frontier in science with important implications for medical advances," said Philipp Kapranov, Ph.D., lead researcher at the St. Laurent Institute. "Future research into the role and function of vlincRNAs holds promise for both highly targeted diagnostic tests and more precise cancer treatments.

Up to 98 percent of human genomic matter is known as "junk" or "dark matter" non-coding DNA, and had for years attracted little interest among scientists who doubted its role in human health and disease. Recent research has begun to identify that part of that non-coding DNA is used by the cell to make RNA such as vlincRNA, highly tissue-specific RNA chains of unusually large lengths, many of which are only found in embryonic or cancerous cells. VlincRNAs found in these two types of cells tend to be expressed based upon genetic signals from ancient viruses that invaded our ancestors' genome millions of years ago and were gradually "domesticated" over . The number of vlincRNAs expressed by these domesticated correlates with both embryonic development and malignant cancers.

"St. Laurent Institute has adapted true single-molecule sequencing technology to global transcriptome analysis, providing state-of-the-art technology for the measurement of the output of the human genome," said Georges St. Laurent III, Scientific Director of the St. Laurent Institute. "Based upon this technology, we now have a greater understanding of transcriptome regulation, with potential to lead to therapeutic targets and better disease diagnostics."

About the study

The observational study published in Genome Biology utilized publicly available and unpublished data sets to find 2,147 vlincRNAs that cover 10 percent of the human genome, suggesting that their production is a common, yet undiscovered, feature of human DNA. The vlincRNAs were shown to be present in as well as stem cells and normal human tissues. Certain types of vlincRNAs, especially those triggered by the signals from domesticated ancient viruses, are seen at specific stages of normal development.

Researchers found that some of these vlincRNAs are co-opted by cancer-associated transcriptional programs. Importantly, removal of these RNAs causes the death of providing a clear direction for the development of therapeutics and better diagnostics for cancer patients. VlincRNAs may contribute to the regulation of gene expression in the nucleus of the cell. Future study of vlincRNAs may illuminate the biological principles that link together and cancer.

Dr. Kapranov, Genomics Team Leader at St. Laurent Institute, first discovered large scale production of non-coding RNA from human genome in 2002 as reported in Science.

Explore further: Scientists analyze genetic makeup of human and mouse embryos in unprecedented detail

Related Stories

Scientists analyze genetic makeup of human and mouse embryos in unprecedented detail

July 31, 2013
(Medical Xpress)—UCLA scientists, in collaboration with teams in China, have used the powerful technology of single-cell RNA sequencing to track the genetic development of a human and a mouse embryo at an unprecedented ...

Retrovirus in the human genome is active in pluripotent stem cells

January 23, 2013
A retrovirus called HERV-H, which inserted itself into the human genome millions of years ago, may play an important role in pluripotent stem cells, according to a new study published in the journal Retrovirology by scientists ...

Bacterial DNA may integrate into human genome more readily in tumor tissue

June 20, 2013
Bacterial DNA may integrate into the human genome more readily in tumors than in normal human tissue, according to a new study from the University of Maryland School of Medicine's Institute for Genome Sciences. Researchers ...

Recommended for you

Scientists identify critical cancer immunity genes using new genetic barcoding technology

October 20, 2018
Scientists at Mount Sinai have developed a novel technology for simultaneously analyzing the functions of hundreds of genes with resolution reaching the single cell level. The technology relies on a barcoding approach using ...

A single missing gene leads to miscarriage

October 19, 2018
A single gene from the mother plays such a crucial role in the development of the placenta that its dysfunction leads to miscarriages. Researchers from the Medical Faculty of Ruhr-Universität Bochum (RUB) have observed this ...

Making gene therapy delivery safer and more efficient

October 18, 2018
Viral vectors used to deliver gene therapies undergo spontaneous changes during manufacturing which affects their structure and function, found researchers from the Perelman School of Medicine at the University of Pennsylvania ...

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

Researchers use brain cells in a dish to study genetic origins of schizophrenia

October 16, 2018
A study in Biological Psychiatry has established a new analytical method for investigating the complex genetic origins of mental illnesses using brain cells that are grown in a dish from human embryonic stem cells. Researchers ...

Why heart contractions are weaker in those with hypertrophic cardiomyopathy

October 16, 2018
When a young athlete suddenly dies of a heart attack, chances are high that they suffer from familial hypertrophic cardiomyopathy (HCM). Itis the most common genetic heart disease in the US and affects an estimated 1 in 500 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.