Failure to destroy toxic protein—not buildup of protein itself—contributes to Huntington's disease

July 21, 2013

Alzheimer's, Huntington's, Parkinson's. Names forever linked to what they represent: diseases that ravage the brain's neurons and leave entire regions to wither and die. These and other so-called neurodegenerative diseases are often associated with the buildup of toxic proteins that lead to the death of neurons. But now, scientists at the Gladstone Institutes have discovered that the progression of disease is not due to the buildup of toxins itself, but rather in the individual neurons' ability to flush these toxins out. Further, they have identified a therapeutic target that could boost this ability, thereby protecting the brain from the diseases' deadly effects.

In the latest issue of Nature Chemical Biology, researchers in the laboratory of Gladstone Investigator Steve Finkbeiner, MD, PhD, describe how a newly developed technology allowed them to see—for the first time—how individual neurons fight back against the buildup of toxic proteins over time. Focusing their efforts on a model of Huntington's disease, the team observed how different types of neurons in the brain each responded to this toxic buildup with different degrees of success, offering clues as to why the disease causes neurons in one region to die, while neurons in another are spared.

"Huntington's—an inherited and fatal disorder that leads to problems with muscle coordination, cognition and personality—is characterized by the toxic buildup of a mutant form the in the brain," explained Dr. Finkbeiner, who directs the Taube-Koret Center for Neurodegenerative Disease Research at Gladstone. Dr. Finkbeiner is also a professor of and physiology at the University of California, San Francisco, with which Gladstone is affiliated. "A long-standing mystery among researchers was how the buildup of the mutant huntingtin protein caused cells to degrade and die, but previous technology made it virtually impossible to see and monitor this process at the . In this study, we employed a method called optical pulse-labeling, or OPL, which allowed us to see how the mutant huntingtin ravaged the brain over time—neuron by neuron."

Using neurons extracted from rodent models of Huntington's, the team employed the OPL method, which monitored the speed and efficiency with which different types of neurons were able to flush out the mutant huntingtin. The faster a cell could clear out the toxins, the longer the neuron survived, and vice versa.

Surprisingly, the research team noticed clear differences in the ability of different types of neurons to clear mutant huntingtin. Neurons located in the striatum—the region of the brain primarily affected by Huntington's disease that is involved in muscle movement—were particularly susceptible. Neurons found in other regions, such as the cortex and cerebellum, were less so. And when they tracked the striatal neurons carrying the mutant huntingtin, they found them much more likely to die than those from other brain regions.

All cells depend on two main processes to clear excess proteins: the ubiquitin-proteasome system (UPS) and autophagy. Although their mechanisms are distinct, their goal is the same: to literally gobble up excess proteins, ensuring they are efficiently flushed out so as to not to interfere with normal cellular activity.

The research team found that striatal neurons were particularly sensitive to disruptions to the autophagy process. But the team found a way around this problem. They artificially accelerated autophagy by boosting the activity of a protein called Nrf2 in these neurons, which prolonged cell survival.

"If we could develop drugs that boost Nrf2 production in the most susceptible to Huntington's, we might extend their survival, thereby staving off the worst effects of the disease," said former Gladstone Postdoctoral Fellow Andrey Tsvetkov, PhD, the study's lead author. "Importantly, our results also demonstrate that the brain itself has evolved powerful coping mechanisms against diseases such as Huntington's. For example, the fact that people don't start experiencing symptoms of Huntington's until the fourth or fifth decade of their lives—even though the mutant huntingtin is present at birth—is further evidence of the brain's ability to stave off the effects of the disease."

"Our findings are critical not only for informing us as to the underlying mechanisms behind diseases such as Huntington's, but also to remind researchers that focusing only on the disease-causing protein—and not how individual cells respond to it–is only one side of the coin," said Dr. Finkbeiner. "To truly understand a complex disease like Huntington's, we must also look to the brain's naturally evolved defense mechanisms, which as we've shown here could represent an entirely new therapeutic strategy."

Explore further: Researchers find chemical 'switches' for neurodegenerative diseases

More information: Nature Chemical Biology DOI: 10.1038/nchembio.1298

Related Stories

Researchers find chemical 'switches' for neurodegenerative diseases

November 27, 2012
By using a model, researchers at the University of Montreal have identified and "switched off" a chemical chain that causes neurodegenerative diseases such as Huntington's disease, amyotrophic lateral sclerosis and dementia. ...

Research points to biomarker that could track Huntington's disease progression

July 8, 2013
A hallmark of neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's is that by the time symptoms appear, significant brain damage has already occurred—and currently there are no treatments that can ...

Breakthrough on Huntington's disease

May 23, 2013
Researchers at Lund University have succeeded in preventing very early symptoms of Huntington's disease, depression and anxiety, by deactivating the mutated huntingtin protein in the brains of mice.

Scientists map process by which brain cells form long-term memories

June 9, 2013
Scientists at the Gladstone Institutes have deciphered how a protein called Arc regulates the activity of neurons—providing much-needed clues into the brain's ability to form long-lasting memories. These findings, reported ...

Scientists tackle Huntington's disease by targeting mutant gene

November 6, 2012
Huntington's disease is an inherited, neurodegenerative disorder that usually appears in mid-adult life and leads to uncoordinated body movements and cognitive decline. The disease is due to multiple repetitions of a deoxyribonucleic ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.