High levels of a specific enzyme in fetuses linked to anxiety

July 24, 2013, Karolinska Institutet

Mouse embryos with the human enzyme CYP2C19 in the brain develop a smaller hippocampus and anxiety-like behaviour as adults. The results of this new study, which is published in the journal Molecular Psychiatry, agree in principle with earlier genetic findings in humans, and can improve science's understanding of the genetic factors behind depression and anxiety disorders and contribute to the development of new anti-anxiety drugs.

Scientists have long been searching for the genetic reasons for the great differences in sensitivity that people show towards depression and anxiety disorders. Now, researchers at Karolinska Institutet have taken a closer look at the CYP2C19 enzyme, which plays an important part in the of psychoactive substances, such as antidepressants (e.g. SSRI drugs). CYP2C19 also operates on endogenous substances that affect the central nervous system. Interestingly, there is a between humans, since mutations of the CYP2C19 gene leave people with no, low, normal or high levels of the enzyme.

The present study was conducted on , which had copies of the human CYP2C19 gene inserted into their DNA so that the researchers could examine if the expression of CYP2C19 affected brain function and behaviour. It was discovered that the enzyme was found in the brain of the mouse fetus, which developed differently to that of normal mice. The behaviour of the mice was then examined using a battery of four behavioural tests.

"We found behavioural changes indicating anxiety and a higher stress sensitivity," says research group leader Magnus Ingelman-Sundberg from the Department of Physiology and Pharmacology. "These findings can tell us more about the of anxiety and the transgenic mice can hopefully be used to develop new anxiolytic drugs."

The expression of CYP2C19 in the fetus produced that had a smaller, stress-hypersensitive hippocampus, an area of the brain essential to learning and memory, adaption and sensitivity to stress and emotional response. A dysfunctional hippocampus in humans is thought to play an important part in the development of both depression and anxiety disorders.

In an earlier study on twins conducted with epidemiologists from Karolinska Institutet, the group observed that individuals lacking the CYP2C19 enzyme display a less depressed base state, a finding that is supported in principle by the present study on mice. The researchers now plan to study what effects genetic variations of CYP2C19 have on the development of the human brain.

"If we can see similar changes in humans, it would improve our understanding of how changes in the developing fetal brain can increase the risk of depression and later in life," says Anna Persson, in whose doctoral project the study is included.

Explore further: Surprise finding shows oxytocin strengthens bad memories and can increase fear and anxiety

More information: "Decreased hippocampal volume and increased anxiety in a transgenic mouse model expressing the human CYP2C19 gene " Molecular Psychiatry, online 23 July 2013

Related Stories

Surprise finding shows oxytocin strengthens bad memories and can increase fear and anxiety

July 22, 2013
It turns out the love hormone oxytocin is two-faced. Oxytocin has long been known as the warm, fuzzy hormone that promotes feelings of love, social bonding and well-being. It's even being tested as an anti-anxiety drug. But ...

Sleep apnea plus dim light at night increases depression, anxiety in mice

July 16, 2013
(Medical Xpress)—New research suggests the estimated 12 million Americans who have obstructive sleep apnea should take better care to sleep in a very dark room. Scientists at The Ohio State University Wexner Medical Center ...

Exercise reorganizes the brain to be more resilient to stress

July 3, 2013
Physical activity reorganizes the brain so that its response to stress is reduced and anxiety is less likely to interfere with normal brain function, according to a research team based at Princeton University.

In the brain, broken down 'motors' cause anxiety

February 7, 2013
When motors break down, getting where you want to go becomes a struggle. Problems arise in much the same way for critical brain receptors when the molecular motors they depend on fail to operate. Now, researchers reporting ...

Analysis does not support genetic test before use of anti-clotting drug

December 27, 2011
Although the U.S. Food and Drug Administration (FDA) has recommended that a certain type of genetic testing (for the genotype CYP2C19) be considered before prescribing the drug clopidogrel to identify individuals who may ...

Drug prevents post-traumatic stress-like symptoms in mice

June 5, 2013
When injected into mice immediately following a traumatic event, a new drug prevents the animals from developing memory problems and increased anxiety that are indicative of post-traumatic stress disorder (PTSD).

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.