Injecting iron supplement lets scientists track transplanted stem cells

July 12, 2013, Stanford University Medical Center

A new, noninvasive technique for tracking stem cells after transplantation—developed by a cross-disciplinary team of radiologists, chemists, statisticians and materials scientists at the Stanford University School of Medicine—could help surgeons determine whether a procedure to repair injured or worn-out knees is successful.

The technique, described in a study to be published online July 12 in Radiology, relies on an imaging agent already approved by the U.S. Food and Drug Administration for an entirely different purpose: anemia treatment. Although this study used rodents, the approach is likely to be adapted for use in humans this fall as part of a clinical trial in which mesenchymal stem cells will be delivered to the site of patients' . Mesenchymal stem cells are capable of differentiating into bone and cartilage, as well as muscle, fat and tendon, but not into the other cell types that populate the body.

Every year, arthritis accounts for 44 million outpatient visits and 700,000 procedures. But the early repair of cartilage defects in young patients may prevent further deterioration of the joint and the need for knee replacement later in life, said the study's senior author, Heike Daldrup-Link, MD, PhD, an associate professor of radiology and clinician who splits her time between research and treating .

Mesenchymal stem cells have been used with some success in cartilage-repair procedures. "These cells can be easily derived from of patients who are going to undergo the knee-repair procedure," said Daldrup-Link, a member of the Molecular Imaging Program at Stanford. "And they can differentiate into the real-life tissues that compose our joints. But here, too, things can go wrong. The newly transferred cells might fail to engraft, or die. They might migrate away. They could develop into tissues other than cartilage, most commonly fibrous scar tissue."

Relatively few transplanted cells go the distance. The ability to monitor the cells' engraftment after they are deposited at a patient's knee-injury site is therefore essential. With the new technique, magnetic resonance imaging can visualize stem cells for several weeks after they have been implanted, giving orthopaedic surgeons a better sense of whether the transplantation was successful.

Until now, the only ways of labeling mesenchymal stem cells so that they could be noninvasively imaged have required their manipulation in the laboratory. Upon extraction, the delicate cells have to be given to lab personnel, incubated with contrast agents, spun in a centrifuge and washed and returned to the surgeons, who then transplant the cells into a patient.

The new technique involves labeling the cells before extraction, while they reside in the donor's bone marrow. For the study, lead authors Aman Khurana, MD, a postdoctoral scholar, and Fanny Chapelin, a research associate, injected ferumoxytol, an FDA-licensed anemia treatment composed of iron-oxide nanoparticles, into rats prior to extracting bone marrow from them. Then, after enriching the mixture for mesenchymal stem cells, the investigators injected it into the sites of knee injuries in recipient rats. They followed the implanted cells' progress for up to four weeks, comparing the results with those obtained both from cells labeled in laboratory dishes and from unlabeled cells.

Daldrup-Link and others previously have used ferumoxytol for stem-cell labeling in a dish. However, mesenchymal stem cells in a laboratory dish take up very little of this substance. Interestingly, the researchers showed in a series of experiments that, ensconced in donor rats' bone marrow, the same cells are avid ferumoxytol absorbers. Even several weeks after transplantation into the recipient rats' knees, the mesenchymal stem cells retain enough iron to provide a strong MRI signal.

The new labeling technique alleviates the risks of contamination introduced when cells are labeled via manipulations in a laboratory dish—a major regulatory concern, said Daldrup-Link—as well as of a substantial loss of the delicate cells due to their extensive manipulation. It also allows for the immediate transfer of cells from a patient's bone marrow to the site of that patient's own knee injury.

That makes the technique useful in an autologous transplantation procedure, in which cells are extracted from a patient for the purpose of being delivered to another site during the same surgery. Jason Dragoo, MD, associate professor of orthopaedic surgery at the medical school and head team physician for the Stanford football program, plans to initiate a clinical trial this autumn whereby patients in need of knee repair will be treated with mesenchymal stem cells taken from their own bone marrow.

At Dragoo's request, Daldrup-Link's team began seeking a way of avoiding the delay and contamination risk associated with standard ways of labeling in a culture dish. "He asked us to find a way to label the cells without touching them," Daldrup-Link said. In anticipation of the upcoming clinical trial, one of Dragoo's trainees, medical student Malcolm Debaun, has taken up residence in the Daldrup-Link's lab in order to learn the technique in preparation for the upcoming clinical trial.

Daldrup-Link professes some amusement at the fact that an iron supplement can be used to track . "Often the simpler approaches are the ones that make it into the clinic," she said.

Explore further: AMSSM: Autologous stem cells show promise for ACL tears

More information: Stanford has filed a provisional patent on the technique associated with this new use of ferumoxytol. The study was funded by the National Institutes of Health (grants 2R01AR054458-05, CCNE U54 CA119367, CCNE U54 CA151459 and R21CA138353A2).

Related Stories

AMSSM: Autologous stem cells show promise for ACL tears

April 20, 2013
(HealthDay)—For patients with partial or complete non-retracted anterior cruciate ligament (ACL) tears, injection of autologous mesenchymal stem cells directly into the ACL sheath may help heal the tear, according to a ...

Type 2 diabetes patients transplanted with own bone marrow stem cells reduces insulin use

June 28, 2013
A study carried out in India examining the safety and efficacy of self-donated (autologous), transplanted bone marrow stem cells in patients with type 2 diabetes (TD2M), has found that patients receiving the transplants, ...

Can stem cells help those with arthritis?

April 28, 2013
Stems cells taken from just a few grams of body fat are a promising weapon against the crippling effects of osteoarthritis.

Better cartilage repairs using stem cells

March 21, 2013
Using adult stem cells is a good way of culturing better-quality cartilage to repair worn hips and knees. New cartilage that has good properties can be grown in particular by cultivating adult stem cells in combination with ...

Research shows way to improve stem cells' cartilage formation

June 4, 2013
(Medical Xpress)—Cartilage injuries are difficult to repair. Current surgical options generally involve taking a piece from another part of the injured joint and patching over the damaged area, but this approach involves ...

Recommended for you

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

Researchers create a functional salivary gland organoid

October 11, 2018
A research group led by scientists from Showa University and the RIKEN Center for Biosystems Dynamics Research in Japan have, for the first time, succeeded in growing three-dimensional salivary gland tissue that, when implanted ...

Lassa fever vaccine shows promise and reveals new test for immunity

October 11, 2018
Lassa fever belongs to the same class of hemorrhagic fevers as Ebola. Like Ebola, it has been a major health threat in Western Africa, infecting 100,000-300,000 people and killing 5,000 per year. A new vaccine against both ...

Genetically engineered 3-D human muscle transplant in a murine model

October 10, 2018
A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.