How Legionella subverts to survive

July 18, 2013
The picture shows a Legionella-containing vacuole (0.002 mm in diameter) isolated from an infected Dictyostelium amoeba. The vacuole is fluorescently labeled with the Dictyostelium protein calnexin (green) and the membrane lipid phosphatidylinositol-4-phosphate (blue), and encloses a single Legionella bacterium (red).

(Medical Xpress)—Bacteria of the genus Legionella have evolved a sophisticated system to replicate in the phagocytic cells of their hosts. LMU researchers have now identified a novel component of this system.

In humans, Legionella is responsible for the so-called Legionnaires' disease, a form of that is often lethal. The bacteria can also cause Pontiac fever, a flu-like condition characterized by coughing and vomiting. Most Legionella-associated illnesses in humans are caused by Legionella pneumophila.

These microorganisms are found in soil, lakes and rivers, and can enter our water supply via the groundwater. The greatest risk of human infection arises when the bacteria colonize air-conditioning ducts or piping used to transport warm water. Persons can be infected when they inhale contaminated – in the shower, for instance.

The research group led by Hubert Hilbi, Professor of Medical Microbiology at LMU, studies how these intracellular parasites survive and replicate in phagocytic cells of their eukaryotic hosts or in the environment. For instance, the pathogen can grow and proliferate in the amoeba Dictyostelium, which normally preys on , engulfing and digesting them. But Legionella turns the tables, resists degradation and continues to grow in the amoeba until it is so full of bacteria that it bursts.

Legionella sabotages the immune system

When L. pneumophila cells infect the , essentially the same thing happens. The bacteria are taken up by called , which normally clear bacterial pathogens from the circulation. But instead of being consumed, the bacteria replicate in the macrophages and ultimately destroy them. Robbed of its first line of defense, the immune system has difficulty coping with the infection, and a life-threatening pneumonia may develop.

The that enable the parasites to outwit their temporary hosts are highly complex. Thus, L. pneumophila secretes around 300 proteins into the infected cell, which is forced to redirect its resources for the bacterium's benefit.

Hilbi and his colleagues have now characterized one of these proteins and describe its mode of action for the first time. This factor, called RidL, disrupts an intracellular transport system that is necessary for the elimination of ingested bacteria. RidL binds to the so-called retromer complex, which is needed for the continued recycling of receptors, which deliver degradative enzymes to phagosomes containing bacteria destined for digestion. "We demonstrate that Legionella blocks the retromer-dependent transport route, thus promoting its own survival in the cell," Hilbi explains. This function is unique. "Proteins that act in this way are otherwise unknown in the bacterial world, and are not found in higher organisms either," he adds.

Explore further: Novel mechanism allows Legionella to hide in body

Related Stories

Novel mechanism allows Legionella to hide in body

May 20, 2013
(Medical Xpress)—The feared Legionella pneumophila is responsible for legionellosis, an infectious disease that can lead to pneumonia. To infect humans, this pathogen has developed a complex method that allows it to camouflage ...

Flu and bacteria: Better prognosis for this potentially fatal combination

April 26, 2013
Scientists from the Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna have provided insights into how much harm bacteria can cause to the lung of people having the flu. An ...

Long-ignored enzyme turns out to be key to killing infectious bacteria

June 11, 2012
New research shows that an enzyme that has long been considered relatively useless to the immune response instead has an important role in setting up immune cells to kill infection-causing bacteria.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.