Plant-based compound may inhibit HIV

July 29, 2013, George Mason University

A compound found in soybeans may become an effective HIV treatment without the drug resistance issues faced by current therapies, according to new research by George Mason University researchers.

It's in the early stages, but , derived from soybeans and other plants, shows promise in inhibiting the HIV infection, says Yuntao Wu, a professor with the George Mason-based National Center for Biodefense and Infectious Diseases and the Department of Molecular and Microbiology.

Still, that doesn't mean people should begin eating large amounts of soy products. "Although genistein is rich in several plants such as soybeans, it is still uncertain whether the amount of genistein we consume from eating soy is sufficient to inhibit HIV," Wu says.

Genistein is a "" that works by blocking the communication from a cell's surface sensors to its interior. Found on a cell's surface, these sensors tell the cell about its environment and also communicate with other cells. HIV uses some of these surface sensors to trick the cell to send signals inside. These signals change so that the virus can get inside and spread infection.

But genistein blocks the signal and stops HIV from finding a way inside the cell. It takes a different approach than the standard used to inhibit HIV.

"Instead of directly acting on the virus, genistein interferes with the that are necessary for the virus to infect cells," Wu says. "Thus, it makes the virus more difficult to become resistant to the drug. Our study is currently it its early stage. If clinically proven effective, genistein may be used as a complement treatment for HIV infection."

Wu sees possibilities in this plant-based approach, which may address drug toxicity issues as well. Because genistein is plant-derived, it may be able to sidestep drug toxicity, a common byproduct of the daily and lifelong pharmaceutical regimen faced by patients with HIV to keep the disease at bay, Wu says. Typically, patients take a combination of multiple drugs to inhibit the virus. The frequency can lead to drug toxicity. Plus, HIV mutates and becomes drug-resistant.

Wu and his team are working at finding out how much genistein is needed to inhibit HIV. It's possible that plants may not have high enough levels, so drugs would need to be developed, Wu says.

Wu's research is feeling the financial squeeze these days due to sequestration and budget cuts within the National Institutes of Health, he says. His lab has turned to novel ways to fund the HIV research, including the genistein project. A bicycle ride dubbed NYC DC AIDS Research Ride raised money for Wu's lab a few years ago and has stepped up its efforts with a new fundraiser.

Explore further: Research breakthrough opens door to new strategy for battling HIV

Related Stories

Research breakthrough opens door to new strategy for battling HIV

September 26, 2012
(Medical Xpress)—New research showing how the HIV virus targets "veterans" or memory T-cells could change how drugs are used to stop the virus, according to new research by George Mason University.

Platelets block HIV

July 23, 2013
Scientists of the DPZ have shown that platelet activation inhibits the host cell entry of HIV

Discovery may help prevent HIV 'reservoirs' from forming

April 17, 2013
Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered how the protein that blocks HIV-1 from multiplying in white blood cells is regulated. HIV-1 is the virus that causes AIDS, and the discovery ...

Lifesaving HIV treatment could reach millions more people following landmark study

July 3, 2013
Millions more people could get access to life-saving HIV drug therapy, following a landmark study led by Australian researchers based at the Kirby Institute at the University of New South Wales (UNSW).

Cancer drug shows promise in eradicating latent HIV infection

November 29, 2012
Breakthrough drugs have made it possible for people to live with HIV longer than ever before, but more work must be done to actually cure the disease. One of the challenges researchers face involves fully eradicating the ...

Recommended for you

New simulation tool predicts how well HIV-prophylaxis will work

June 14, 2018
A new mathematical simulation approach predicts the efficacy of pre- and post-exposure prophylaxis (PrEP) medications, which help prevent HIV infection. The framework, presented in PLOS Computational Biology by Sulav Duwal ...

Many at risk for HIV despite lifesaving pill

June 11, 2018
Multiple barriers may stop high-risk individuals from accessing an HIV drug that can reduce the subsequent risk of infection, according to a new University of Michigan study.

Active HIV in large white blood cells may drive cognitive impairment in infected mice

June 7, 2018
Macrophages, large white blood cells that engulf and destroy potential pathogens, harbor active viral reserves that appear to play a key role in impaired learning and memory in mice infected with a rodent version of HIV. ...

HIV vaccine elicits antibodies in animals that neutralize dozens of HIV strains

June 4, 2018
An experimental vaccine regimen based on the structure of a vulnerable site on HIV elicited antibodies in mice, guinea pigs and monkeys that neutralize dozens of HIV strains from around the world. The findings were reported ...

HIV study reveals new group of men at risk of infection

June 4, 2018
A group of men who may be underestimating their HIV risk has been identified in a new study.

Discovery reveals how cells try to control levels of key HIV protein

May 31, 2018
One of the many challenges in treating HIV is that the virus can lie dormant in cells, quietly evading immune detection until it suddenly roars to life without warning and begins replicating furiously. Salk Institute researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.