Research breakthrough opens door to new strategy for battling HIV

September 26, 2012 by Michele Mcdonald
Researchers Yuntao Wu and Jia Guo in Mason’s National Center for Biodefense and Infectious Diseases. Photo by Evan Cantwell

(Medical Xpress)—New research showing how the HIV virus targets "veterans" or memory T-cells could change how drugs are used to stop the virus, according to new research by George Mason University.

The research will appear in the 's October edition and currently is available online.

"It's a big breakthrough for us," says Yuntao Wu, an author of the study and professor at the Mason-based National Center for and . "I think this will impact the field."

Helper T-cells support the body's immune system by organizing forces to fight off infection. The hijacks helper T-cells. When helper T-cell numbers plummet, the body is vulnerable to disease.

Not all helper T-cells are the same; some are experienced ones called memory helper T-cells, and others, naive cells or "virgin" cells, haven't encountered an infection. Mason researchers studied why HIV preferentially goes after memory helper T-cells, while shunning their close colleagues. Memory and naive T-cells appear similar.

"In the body, HIV is able to kill most memory ," says Weifeng Wang, the study's main author. "We wanted to pursue what makes the difference between memory and naive T-cells on a molecular level."

Unlike naive helper T-cells, memory T-cells are on the go, and much more mobile. And it's that momentum that attracts the HIV and makes the memory cell vulnerable, says Wang, who's currently a research fellow in the Dana-Farber Cancer Institute at Harvard Medical School.

When a memory cell moves, inside the cell, it looks like a waterfall on the moving edge. "It's called 'treadmilling'," Wu says. "The or the cell's supporting bone is acting like a muscle. The treadmilling of cytoskeleton pushes the cell to migrate. That's how it pushes itself. In the past year we've been studying how HIV infects those . It has to go to the center, into the nucleus. It has to go past the cytoskeleton barriers to go into the center. For many years we didn't understand how the virus could cross such a structure. It's like a wall. It has to cross that wall."

HIV jumps over the wall by exploiting the cell's treadmilling process, Wu says. "The HIV virus uses a receptor to attach to the cell for entry," he says. "When the virus touches that receptor it's like someone ringing the doorbell. That triggers a signal—someone comes out and opens the door. Now the HIV virus can start the treadmill to 'walk' along the cytoskeleton towards the center. If the virus goes to naive cells, it cannot do it. Naive cells aren't sensitive enough. The cytoskeleton of these 'virgin' cells is different from the memory cells, and it is not easy for the virus to start the treadmilling process."

HIV's knack for mutating makes it a tough target for drugs, Wang says. By shifting the focus to the cell, away from the virus itself, researchers may find a new way to tackle the virus, he says.

"Basically, our new strategy will be finding a cellular target, something HIV needs to depend on," Wu says. "It's as if the virus says 'give me a house.' The cell is the house. The house has to have electricity and everything so it can live there. Our approach is to look for something the virus needs to live in that house and then to reduce it or shut it down. The challenge will be if you shut that down, that it doesn't impact normal cell functions. It's a very tricky balance. You want to kill the virus but not healthy cells along with it."

Wu is looking at existing drugs, including those used for cancer. "There is something shared between cancer cells and HIV-infected cells because cancer also like to migrate. So some drugs that are used to slow down cancer migration could also be used to treat HIV."

Explore further: New memory for HIV patients

More information: www.jbc.org/content/early/2012 … M112.362400.abstract

Related Stories

New memory for HIV patients

March 26, 2012
The hallmark loss of helper CD4+ T cells during human immunodeficiency virus (HIV) infection may be a red herring for therapeutics, according to a study published on March 26th in the Journal of Experimental Medicine.

Sugar-binding protein may play a role in HIV infection

June 14, 2011
Specific types of "helper" T cells that are crucial to maintaining functioning immune systems contain an enzyme called PDI (protein disulfide isomerase).

Under the right conditions, peptide blocks HIV infection at multiple points along the way

July 24, 2012
Human defensins, aptly named antimicrobial peptides, are made in immune system cells and epithelial cells (such as skin cells and cells that line the gut). One of these peptides, human neutrophil peptide 1, under certain ...

Recommended for you

New injectable antiretroviral treatment proved to be as effective as standard oral therapy

August 3, 2017
Intramuscularly administered antiretroviral therapy (ART) may be as effective for HIV treatment as current oral therapies. This is the main conclusion of a Phase II clinical trial carried out by 50 research centers around ...

Research finds home-based kit would increase HIV testing

July 31, 2017
Research led by William Robinson, PhD, Associate Research Professor of Behavioral & Community Health Sciences at LSU Health New Orleans School of Public Health, has found that 86% of heterosexuals who are at high risk for ...

Scientists divulge latest in HIV prevention

July 25, 2017
A far cry from the 1990s "ABC" campaign promoting abstinence and monogamy as HIV protection, scientists reported on new approaches Tuesday allowing people to have all the safe sex they want.

Girl's HIV infection seems under control without AIDS drugs

July 24, 2017
A South African girl born with the AIDS virus has kept her infection suppressed for more than eight years after stopping anti-HIV medicines—more evidence that early treatment can occasionally cause a long remission that, ...

Meds by monthly injection might revolutionize HIV care (Update)

July 24, 2017
Getting a shot of medication to control HIV every month or two instead of having to take pills every day could transform the way the virus is kept at bay.

Candidate AIDS vaccine passes early test

July 24, 2017
The three-decade-old quest for an AIDS vaccine received a shot of hope Monday when developers announced that a prototype triggered the immune system in an early phase of human trials.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.