Sugar-binding protein may play a role in HIV infection

June 14, 2011, University of California Los Angeles

Specific types of "helper" T cells that are crucial to maintaining functioning immune systems contain an enzyme called PDI (protein disulfide isomerase).

This enzyme affects how proteins fold into specific shapes, which in turn influences how the behave. PDI also plays a role in HIV infection by helping to change the shape of the surface of the virus, enabling the virus to interact optimally with receptors on the T cells, such as the CD4 molecule.

Though it is known that PDI inhibitors can prevent HIV infection, just how this happens has remained a mystery. And though it has been known that PDI, which normally lives inside the cell, can become entrapped on the cell's surface, it has not been understood how this happens.

Now, in a new study, UCLA researchers report that a sugar-binding protein called galectin-9 traps PDI on T-cells' surface, making them more susceptible to .

The findings could lead researchers to a potential new target for anti-HIV therapeutics, such as therapies to inhibit PDI or galectin-9.

Explore further: Research sheds new light on how blood clots form

More information: Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry, PNAS, Published online before print June 13, 2011, doi: 10.1073/pnas.1017954108

Abstract
Interaction of cell surface glycoproteins with endogenous lectins on the cell surface regulates formation and maintenance of plasma membrane domains, clusters signaling complexes, and controls the residency time of glycoproteins on the plasma membrane. Galectin-9 is a soluble, secreted lectin that binds to glycoprotein receptors to form galectin–glycoprotein lattices on the cell surface. Whereas galectin-9 binding to specific glycoprotein receptors induces death of CD4 Th1 cells, CD4 Th2 cells are resistant to galectin-9 death due to alternative glycosylation. On Th2 cells, galectin-9 binds cell surface protein disulfide isomerase (PDI), increasing retention of PDI on the cell surface and altering the redox status at the plasma membrane. Cell surface PDI regulates integrin function on platelets and also enhances susceptibility of T cells to infection with HIV. We find that galectin-9 binding to PDI on Th2 cells results in increased cell migration through extracellular matrix via β3 integrins, identifying a unique mechanism to regulate T-cell migration. In addition, galectin-9 binding to PDI on T cells potentiates infection with HIV. We identify a mechanism for regulating cell surface redox status via a galectin–glycoprotein lattice, to regulate distinct T-cell functions.

Related Stories

Research sheds new light on how blood clots form

June 13, 2011
Scripps Research Institute scientists have discovered new elements of the blood clot-formation process. The findings could lead to better drugs for preventing heart attacks and other clot-related conditions.

Recommended for you

War in Ukraine has escalated HIV spread in the country: study

January 15, 2018
Conflict in Ukraine has increased the risk of HIV outbreaks throughout the country as displaced HIV-infected people move from war-affected regions to areas with higher risk of transmission, according to analysis by scientists.

Researchers offer new model for uncovering true HIV mortality rates in Zambia

January 12, 2018
A new study that seeks to better ascertain HIV mortality rates in Zambia could provide a model for improved national and regional surveillance approaches, and ultimately, more effective HIV treatment strategies.

New drug capsule may allow weekly HIV treatment

January 9, 2018
Researchers at MIT and Brigham and Women's Hospital have developed a capsule that can deliver a week's worth of HIV drugs in a single dose. This advance could make it much easier for patients to adhere to the strict schedule ...

New long-acting, less-toxic HIV drug suppresses virus in humanized mice

January 8, 2018
A team of Yale researchers tested a new chemical compound that suppresses HIV, protects immune cells, and remains effective for weeks with a single dose. In animal experiments, the compound proved to be a promising new candidate ...

Usage remains low for pill that can prevent HIV infection

January 8, 2018
From gritty neighborhoods in New York and Los Angeles to clinics in Kenya and Brazil, health workers are trying to popularize a pill that has proven highly effective in preventing HIV but which—in their view—remains woefully ...

Researchers find clues to AIDS resistance in sooty mangabey genome

January 3, 2018
Peaceful co-existence, rather than war: that's how sooty mangabeys, a monkey species found in West Africa, handle infection by SIV, a relative of HIV, and avoid developing AIDS-like disease.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.