Boning up: Researchers find home of best stem cells for bone marrow transplants

August 1, 2013

McMaster University researchers have revealed the location of human blood stem cells that may improve bone marrow transplants. The best stem cells are at the ends of the bone.

It is hoped this discovery will lead to lowering the amount of bone marrow needed for a donation while increasing regeneration and lessening rejection in the recipient patients, says principal investigator Mick Bhatia, professor and scientific director of the McMaster Stem Cell and Cancer Research Institute.

In a paper published online today by the journal Cell Stem Cell, his team reports that human (HSC) residing in the end (trabecular region) of the bones display the highest regenerative ability of the blood and immune system.

"Like the best professional hockey players, our findings indicate blood stem cells are not all equal," said Bhatia. "We now reveal the reason why—it's not the players themselves, but the effect the arena has on them that makes them the highest scorers."

Bone marrow transplants have been done for more than 50 years and are routine in most hospitals, providing a life saving treatment for cancer and other diseases including leukemia, anemia, and .

Bhatia, who also holds a Canada Research Chair in Human Stem Cell Biology, said that cells surrounding the best blood stem cells are critically important, as these "stem cell neighbors" at the end of the bone provide the unique instructions that give these stem cells their superior regenerative abilities.

Explore further: Cross-country collaboration leads to new leukemia model

Related Stories

Cross-country collaboration leads to new leukemia model

July 31, 2013

Eight years ago, two former Stanford University postdoctoral fellows, one of them still in California and the other at the Harvard Stem Cell Institute (HSCI) in Cambridge, began exchanging theories about why patients with ...

Recommended for you

Healing wounds with cell therapy

May 29, 2017

Diabetic patients frequently have lesions on their feet that are very difficult to heal due to poor blood circulation. In cases of serious non-healing infections, a decision to amputate could be made. A new therapeutic approach, ...

Bioelectricity new weapon to fight dangerous infection

May 26, 2017

Changing the natural electrical signaling that exists in cells outside the nervous system can improve resistance to life-threatening bacterial infections, according to new research from Tufts University biologists. The researchers ...

New hair growth mechanism discovered

May 25, 2017

In experiments in mice, UC San Francisco researchers have discovered that regulatory T cells (Tregs; pronounced "tee-regs"), a type of immune cell generally associated with controlling inflammation, directly trigger stem ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.