Fetal stem cell transplantation favorably impacts radiation-induced cognitive dysfunction

August 22, 2013

Patients receiving cranial irradiation treatment for brain cancer may find the treatment life-saving, but often suffer progressive and debilitating cognitive detriments, including spatial learning and memory deficits. The cognitive deficits are a contributing factor to the often significant adverse impacts on the surviving patients' quality of life after radiation therapy. In an effort to improve post-irradiation cognitive impairment, scientists at the University of California, Irvine, and colleagues at Neuralstem, Inc. (Rockville, MD), have transplanted fetal stem cells into laboratory animals with radiation-induced cognitive impairments and found that this led to a number of cognitive improvements. The study appears as an early e-publication for the journal Cell Transplantation.

"Multiple mechanisms contribute to disrupted cognition following irradiation for patients with central nervous system malignancies. These include the depletion of radiosensitive populations of stem and progenitor cells in the hippocampus," said study co-author Dr. Charles L. Limoli of the Department of Radiation Oncology at the University of California, Irvine. "Interventions to combat long-term brain damage resulting from toxic radiation and chemotherapies therapies have yet to be developed. However, stem cell replacement strategies may provide a much needed intervention."

The researchers explored the potential beneficial impact of intra-hippocampal transplantation of fetal-derived human neural stem cells by transplanting the cells into laboratory rats a month after the animals were subjected to cranial irradiation with resulting cognitive deficits. The stem cells were FDA-approved human, fetal-derived neural stem cells provided by Neuralstem, Inc.

"Engrafted stem cells underwent extensive neuronal differentiation, formed new synaptic contacts, released neurotrophic factors, and showed an advanced degree of structural integration into the motor circuitry," reported the research team.

They found that the test animals showed improved hippocampal spatial memory and hippocampal-related "fear conditioning performance" when compared to a control group of irradiated animals that did not receive stem cell transplantation. The engrafted cells also migrated and differentiated into neural and glial subtypes in areas of the hippocampus.

"The engrafted survived and differentiated throughout an area of the hippocampus and significantly ameliorated cognitive dysfunction as shown at a one-month follow-up on the irradiated animals," said Dr. Limoli. "While it is premature to presume efficacy in the absence of human data, our efforts to thwart cognitive dysfunction by cell replacement therapy with fetal stem cell transplantation may provide an experimental backdrop for a potential treatment for cranially irradiated patients who developed cognitive dysfunctions."

"Cognitive dysfunction is an unfortunate side effect of the therapeutic use of radiation therapy for brain cancer and the identification of ways to ameliorate the dysfunction, such as the application of stem , is a significant area of research" said Dr. Paul R. Sanberg, distinguished professor at the Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL.

"This study is an important step towards the development of a clinical therapy, though further research is still required."

Explore further: Stem cell treatment may restore cognitive function in patients with brain cancer

More information: Acharya, M. M.; Christie, L-A.; Hazel, T G.; Johe, K. K.; Limoli, C. L. Transplantation of human fetal-derived neural stem cells improves cognitive function following cranial irradiation. Cell Transplant. Appeared or available online: July 17, 2013. www.ingentaconnect.com/content … prints/ct1048acharya

Related Stories

Stem cell treatment may restore cognitive function in patients with brain cancer

July 13, 2011
Stem cell therapy may restore cognition in patients with brain cancer who experience functional learning and memory loss often associated with radiation treatment, according to a laboratory study published in Cancer Research, ...

Stem cells restore cognitive abilities impaired by brain cancer treatment

July 13, 2011
Human neural stem cells are capable of helping people regain learning and memory abilities lost due to radiation treatment for brain tumors, a UC Irvine study suggests.

There's life after radiation for brain cells

August 12, 2013
Scientists have long believed that healthy brain cells, once damaged by radiation designed to kill brain tumors, cannot regenerate. But new Johns Hopkins research in mice suggests that neural stem cells, the body's source ...

Type 2 diabetes patients transplanted with own bone marrow stem cells reduces insulin use

June 28, 2013
A study carried out in India examining the safety and efficacy of self-donated (autologous), transplanted bone marrow stem cells in patients with type 2 diabetes (TD2M), has found that patients receiving the transplants, ...

Cranial irradiation causes brain degeneration

July 16, 2013
(Medical Xpress)—Cranial irradiation saves the lives of brain cancer patients. It slows cancer progression and increases survival rates. Unfortunately, patients who undergo cranial irradiation often develop problems with ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.