New design may produce heartier, more effective salmonella-based vaccines

August 6, 2013 by Richard Harth, Arizona State University
ASU researchers can tame salmonella to act as a vaccine Trojan horse and trigger an immune response against a number of infectious diseases. Credit: Jason Drees, Biodesign Institute

The bacterial pathogen Salmonella has a notorious capacity for infection. Last year alone, according to the Center for Disease Control, various species of Salmonella caused multistate disease outbreaks linked with contaminated peanut butter, mangoes, ground beef, cantaloupe, poultry, tuna fish, small turtles and dry dog food.

The troublesome invader, however, can be turned to human advantage. Through , the species S. Typhi can be rendered harmless and used in vaccines in order to prevent, rather than cause illness.

In new research, reported in the Journal of Bacteriology, lead author Katie Brenneman and her colleagues describe efforts to improve the effectiveness of a Recombinant Attenuated Salmonella Vaccine (RASV) by modifying its ability to survive the hostile environment of the stomach.

"Even though wild-type strains of Salmonella are quite capable of surviving the of the stomach, it is surprisingly difficult to deliver a live Salmonella vaccine orally," Brenneman says. "Many vaccines have mutations that leave them especially vulnerable to low pH, which means a large proportion of the vaccine cells are killed before they reach the intestine and thus are unable to do their job of delivering vaccine targets to the immune system. We're trying to compensate for that increased acid sensitivity by increasing expression of the normal acid resistance systems."

The group demonstrated experimental strategies to restore acid resistance in several Salmonella , thereby improving their ability to survive low pH conditions in the stomach. The improved survival rate allows more of the bacterial cells to continue their infection sequence, colonizing intestinal tissues and generating a strong immune response.

Further, the acid resistant vaccine strains may behave more like unmodified Salmonella, which are cued by low pH conditions to prepare for the later stages of the infection process by up-regulating a key suite of genes involved in host interactions. These factors, the authors suggest, may significantly improve the effectiveness of Salmonella vaccines.

Co-authors of the study include Crystal Willingham, Wei Kong, Roy Curtiss III, and Kenneth L. Roland.

At the Biodesign Institute's Center for Infectious Diseases and Vaccinology at ASU, researchers have been harnessing Salmonella's impressive ability to infiltrate human tissues and stimulate immune responses, producing Salmonella-based vaccines targeting a range of illnesses.

The Center is under the direction of Roy Curtiss III, whose team has been genetically modifying the pathogen in efforts to produce a new breed of safe, efficient and cost- effective vaccine.

Salmonella vaccines offer great potential in meeting growing needs for effective protection against existing and emergent threats. One such vaccine—designed by the Curtiss group and currently in Phase I FDA trials—targets infant pneumonia, a disease that continues to kill some 2 million people per year, many of them in the developing world. Other RASV's are in various stages of development.

Such vaccines are attractive for a number of reasons. They can typically be produced much more cheaply than conventional vaccines, they may be delivered orally rather than through injection and can confer long-term immunity without the requirement of a subsequent booster dose. Further, Salmonella powerfully stimulates both cellular and humoral immunity, producing a robust, systemic response in the vaccine recipient.

The basic idea behind RASVs is to genetically retool the Salmonella bacterium in such a way that it retains its strong, immunogenic properties without causing illness. It is then outfitted with antigens for the particular disease the vaccine is designed to protect against. This Trojan-horse method introduces the disease antigens hidden in the Salmonella carrier, which then stimulate the immune responses.

But as the authors of the current study explain, the promising technique—potentially applicable for vaccines against virtually any pathogen—is not without its challenges. One of the most significant hurdles concerns the ability of Salmonella to survive the harsh environment of the stomach, where highly acidic (low pH) conditions prevail.

Naturally occurring, unmodified Salmonella have evolved sophisticated strategies of acid tolerance and acid resistance that allow them to survive the stomach environment. By contrast, modified Salmonella strains cultured in the laboratory are weakened or attenuated to improve their safety. The process has the negative effect of greatly reducing Salmonella's acid tolerance.

A number of features allow normal Salmonella to survive low pH conditions. Two of the most important have been studied in some detail. The first is known as the acid tolerance response (ATR) and the second, the arginine decarboxylase acid resistance system. The latter of these mechanisms is not expressed in Salmonella cultured for vaccine use and the remaining ATR system is often insufficient to protect bacterial cells from stomach acid.

One approach to the problem has been to protect the vaccine strain from low pH conditions by shrouding it in an enteric capsule. Alternately, vaccines have been administered in conjunction with an antacid to lower stomach pH, (typically with sodium bicarbonate).

These strategies improve the survival of vaccine strains but have the disadvantage of depriving Salmonella of encountering the low pH environment, which acts to signal the bacteria that they have entered the host environment. These signals stimulate the upregulation of genes to help Salmonella survive the next phase of infection in the intestine, where it is threatened by short-chained fatty acids, antimicrobial peptides and osmotic stress. Further, induction of normal acid tolerance response improves Salmonella's ability to invade epithelial cells in the intestine.

In the current study, researchers attempted to restore acid tolerance in modified Salmonella at pH levels of 3 and 2.5 in order to overcome the loss of tolerance imposed by three common gene mutations used for RASVs. To accomplish this, a hybrid version of the arginine decarboxylase acid resistance system was created. This system was not only capable of inducing acid resistance in cultured Salmonella cells, but could be tightly controlled by means of a special promoter, triggered by the presence of the sugar rhamnose.

Use of the rhamnose promoter to induce acid resistance allows cultured cells to be prepared to withstand the low pH rigors of the stomach. Following the initial stages of infection, the bacterial cells expend their storehouse of rhamnose and their acid resistance is then rapidly downregulated.

Experiments confirmed that the rhamnose-regulated system could indeed rescue Salmonella from exposure to low pH conditions and that it provided with an equivalent degree of protection from acidic environments to the native arginine decarboxylase system.

The three acid unadapted mutants used in the study all showed significant improvement in survival at pH conditions of 3 and 2.5. The results open the door to the efficient and cost-effective creation of highly acid resistant vaccine strains that can exhibit fine-grained control under a rhamnose promoter and can be produced on demand. Allowing vaccine strain exposure to low gastric pH should further improve performance, by triggering virulence genes necessary for subsequent survival and colonization in the intestine.

"In future studies, we will need to validate that this system, or other similar systems under construction, will improve the immunogenicity of an RASV," says co-author Ken Roland. "This work is ongoing, but I can tell you that we have preliminary data supporting the idea that our rhamnose-regulated arginine decarboxylase system can significantly enhance the immunogenicity and protective immunity of an RASV."

Explore further: New salmonella-based 'clean vaccines' aid the fight against infectious disease

More information:

Related Stories

New salmonella-based 'clean vaccines' aid the fight against infectious disease

June 29, 2011
A powerful new class of therapeutics, known as recombinant attenuated Salmonella vaccines (RASV), holds great potential in the fight against fatal diseases including hepatitis B, tuberculosis, cholera, typhoid fever, AIDS ...

New DNA vaccine technology poised to deliver safe and cost-effective disease protection

November 5, 2012
New and increasingly sophisticated vaccines are taking aim at a broad range of disease-causing pathogens, targeting them with greater effectiveness at lower cost and with improved measures to ensure safety.

Experimental vaccine offers improved protection for poultry

February 19, 2013
Chickens are vulnerable to a range of infectious diseases similar to those found in humans. Fowl typhoid is a widespread and devastating illness, particularly in the developing world, where the birds are a vital source of ...

Researchers find Salmonella to be more resilient than originally thought

April 10, 2013
(Medical Xpress)—Virginia Tech scientists have provided new evidence that biofilms—bacteria that adhere to surfaces and build protective coatings—are at work in the survival of the human pathogen Salmonella.

Discovery paves way for salmonella vaccine

February 13, 2012
(Medical Xpress) -- An international research team led by a University of California, Davis, immunologist has taken an important step toward an effective vaccine against salmonella, a group of increasingly antibiotic-resistant ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.