Pancreas: New procedure detects tumours more efficiently

August 20, 2013, Paul Scherrer Institute
The arrow points to the accumulation of the low-level radioactive substance in the insulinoma. In this case, the insulinoma was localized in the head of the pancreas. As the substance is released through the kidneys, the kidneys are visible as well. Credit: Nuklearmedizin, Universitätsklinikum Freiburg i. Br.

Swiss researchers have developed a method that is able to reliably localise certain tumours in the pancreas known as insulinomas. The new method was presented online in the renowned medical journal Lancet on 25 July. The print publication is due to follow in September. The study has been supported by the Swiss National Science Foundation, the Swiss Cancer League and the United Kingdom's Department of Health.

Dangerously low blood sugar levels

Insulinomas are rare tumours that produce hormones, especially insulin. They are normally found in the pancreas and are mostly benign and small (approx. 1 to 1.5 cm in diameter). As they release insulin uncontrollably, however, they repeatedly cause dangerously levels (hypoglycaemia), which can lead to disorientation, and in rare cases to seizures or coma. They often take a long time to be diagnosed. For the patients, this means a prolonged and intensive period of suffering.

Operate – but where?

The only cure is to remove the insulinoma by a surgical intervention. However, the surgeon needs to know the exact location of the insulinoma. Using conventional imaging such as CT (computed tomography) and MRI (), only sixty to seventy per cent of these tumours can be located, which means thirty to forty per cent cannot be identified. So far, invasive investigations are proposed in case of a negative outcome of conventional imaging: these include insulin concentration measurements in the vessels surrounding the pancreas. For this purpose, a catheter has to be inserted into the pancreatic vessels and the liver vein. Alternatively, a including an of the pancreas is performed in order to detect smaller tumours.

Tumour made visible radioactively

In order to localize the insulinomas, the researchers injected an artificial substance combined with low-level radioactive indium into thirty patients with a strong suspicion of insulinomas. The substance accumulates in the tumour and, thanks to its low-level radioactive radiation, renders the mini-tumour visible in a special camera. As a result, ninety-five per cent of the insulinomas could be localised. With CT or MRI, the detection rate would only have been forty-seven per cent. "It is likely that this method will replace the existing invasive methods for locating insulinomas in the future," says Professor Emanuel Christ from the Inselspital Berne, the endocrinologist (metabolism specialist) responsible for this research project.

Success thanks to international network

What might sound simple was only possible thanks to years of pioneering work and a national and international research network: at the Inselspital and the University Hospital Basel, Christ, nuclear medicine researcher Professor Damian Wild and private lecturer Flavio Forrer defined the aim of the study, the study method and the criteria for patient selection. Together with colleagues in St. Gallen, Lucerne, Freiburg im Breisgau (Germany) and London, they then selected patients for the study. In a proof-of-concept study, the researchers successfully investigated six Swiss patients in 2009. The aim of this subsequent prospective large-scale study was to confirm the results.

Tumour outsmarted with keyhole technique

Dr Martin Béhé (now at the Paul Scherrer Institute) and colleagues developed the low-level radioactive substance to outwit the invisible tumour by exploiting a familiar phenomenon: nearly all insulinomas have a large number of so-called GLP-1 receptors on their surface – a kind of keyhole that can only be opened with a single key, the chemical substance GLP-1. The researchers used a similar substance they had co-developed, exendin-4, which fits the same "keyhole". Using exendin-4, the low-level radioactive indium could thus be smuggled into the tumour and its veil of camouflage lifted.

Explore further: New marker substance for cancer cells

More information: Christ, E. et al. Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study, The Lancet Diabetes & Endocrinology, Early Online Publication, 25 July 2013.

Related Stories

New marker substance for cancer cells

July 4, 2013
Scientists from ETH Zurich have developed a new substance that enables certain tumour types to be rendered visible in high resolution using positron emission tomography. The so-called tracer has successfully been tested in ...

Sugar makes cancer light-up in MRI scanners

July 7, 2013
A new technique for detecting cancer by imaging the consumption of sugar with magnetic resonance imaging (MRI) has been unveiled by UCL scientists. The breakthrough could provide a safer and simpler alternative to standard ...

Lymphatic fluid takes detour

May 20, 2013
When tumours metastasise, they can block lymphatic vessels, as researchers from ETH Zurich have discovered using a new method. The lymphatic fluid subsequently has to find a new path through the tissue. Such "detours" could ...

Metabolic 'fingerprinting' of tumors could help bowel cancer patients

August 12, 2013
It is possible to see how advanced a bowel cancer is by looking at its metabolic 'fingerprint', according to new research.

Brain tumour cells killed by anti-nausea drug

March 18, 2013
(Medical Xpress)—New research from the University of Adelaide has shown for the first time that the growth of brain tumours can be halted by a drug currently being used to help patients recover from the side effects of ...

New study points to the aggressive potential of small kidney tumours, advocates treatment

March 18, 2013
Small kidney tumours have an agressive potential and should be treated, according to a the results of a large multicentre study presented at the 28th Annual EAU Congress in Milan.

Recommended for you

Genetic discovery may help better identify children at risk for type 1 diabetes

January 17, 2018
Six novel chromosomal regions identified by scientists leading a large, prospective study of children at risk for type 1 diabetes will enable the discovery of more genes that cause the disease and more targets for treating ...

Thirty-year study shows women who breastfeed for six months or more reduce their diabetes risk

January 16, 2018
In a long-term national study, breastfeeding for six months or longer cuts the risk of developing type 2 diabetes nearly in half for women throughout their childbearing years, according to new Kaiser Permanente research published ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.