New marker substance for cancer cells

July 4, 2013, ETH Zurich
Postdoc Thomas Betzel preparing the synthesis of the newly developed folic acid PET tracer for use on cancer patients. Credit: Gloria Pla / ETH Zurich

Scientists from ETH Zurich have developed a new substance that enables certain tumour types to be rendered visible in high resolution using positron emission tomography. The so-called tracer has successfully been tested in mice. Now the researchers are planning clinical trials in humans.

Imaging techniques in medicine provide far more than merely information on the scale and location of cancerous ulcers. There are modern methods that additionally characterise the precisely, for instance by specific molecules they carry on their surface. Such additional information gives doctors key clues as to the precise cancer type and enables them to predict the probability that a patient will respond to a particular form of therapy.

Positron emission tomography (PET) is one such technique. Unlike with computed tomography or , PET does not render the visible, but rather radioactively marked molecules – known as tracers – inside the body, which are injected into the patient's bloodstream prior to the scan. Based on the lock-and-key principle, they adhere to certain molecules on the . Through the radioactive radiation, specifically cell tissue with these is visible on the PET scan.

Researchers from ETH Zurich, the Paul Scherrer Institute and company Merck Millipore have now developed a new tracer for PET that binds to the folic acid receptor. This receptor is interesting because it accumulates on the cell surface in many . The PET scan provides information on the size and location of the tumour and the density of the folic acid receptors on the cell surface.

World's first clinical trial

The team of researchers headed by Simon Ametamey and Roger Schibli, both professors at the Institute of Pharmaceutical Sciences at ETH Zurich, have successfully tested their new substance in mice with cervical tumours. In a next step, the scientists now want to study whether the substance proves equally successful in humans. A pilot study on patients with ovarian, lung and intestinal cancer in several Swiss hospitals, including University Hospital Zurich, is in preparation. It will be the first clinical trial on a folic acid receptor marker for PET on patients.

If the substance proves suitable, the scientists would like to use it to predict the efficacy of chemotherapy in the future. They primarily have a new generation of cancer medication in mind that also binds to the folic acid receptor, which then channels the drug into the cancer cells, where it unfolds its therapeutic effect.

Personalised medicine

"Our PET tracer provides important additional information for this targeted therapeutic approach with cytotoxic substances," says Ametamey. After all, one difficulty with the new form of therapy is that not in all patients the cancer cells carry the folic acid receptor. In the case of ovarian, cervical and brain tumours, it is nine out of ten patients, with lung cancer around three quarters and with breast cancer about half. In patients without the receptor, the novel chemotherapy is ineffective.

With the aid of the new technique, it could be possible to predict whether a patient will respond to such treatment. Patients whose tumours do not have any folic acid receptors could be spared this therapy and its side effects. Moreover, physicians can use the new PET tracer to better monitor the progress of the therapy and study whether the tumour is shrinking.

Making inflammations visible

However, the new PET tracer is not just interesting for cancer medicine, but also just the ticket for displaying inflammatory responses in the body. After all, the folic acid receptor occurs also at the surface of certain cells of the immune system, the macrophages, and only if these are in a so-called activated state during an inflammatory response. The new marker substance could thus be used to display inflammatory diseases such as arteriosclerosis, arthritis or inflammatory bowel diseases with PET.

Moreover, a third area of application is also imaginable for the substance: medication development. "If we've got a method to detect chronic inflammatory responses in a non-invasive way, we can test the efficacy of anti-inflammatory medication more effectively," explains Schibli.

Only lab in Switzerland

The work with the radioactive PET marker substance poses special challenges in terms of lab infrastructure. ETH Zurich is home to the only lab in Switzerland to possess the facilities for the development of new radioactive substances and at the same time meet the demands to produce such substances for use in clinical trials on humans. The key is to manufacture the molecules at high purity levels and in sufficient amounts. PET tracers cannot be stored since the radioactive isotope Fluorine-18 used in the study degrades rapidly (it has a half-life of less than two hours). Consequently, the researchers developed a non-radioactive precursor molecule to which they can add the radioactive Fluorine-18 at the last minute. The end product has to be transported to the patient immediately after production and quality control.

Explore further: Lymphatic fluid takes detour

More information: Betzel T, Müller C, Groehn V, Müller A, Reber J, Fischer CR, Krämer SD, Schibli R, Ametamey SM: Radiosynthesis and Preclinical Evaluation of 3'-Aza-2'-[18F]fluorofolic Acid: A Novel PET Radiotracer for Folate Receptor Targeting. Bioconjugate Chemistry, 2013, 24, 205-214. DOI: 10.1021/bc300483a

Related Stories

Lymphatic fluid takes detour

May 20, 2013
When tumours metastasise, they can block lymphatic vessels, as researchers from ETH Zurich have discovered using a new method. The lymphatic fluid subsequently has to find a new path through the tissue. Such "detours" could ...

PET-CT improves care of limited-stage small-cell lung cancer patients

June 25, 2013
Each year, 13 percent of all newly diagnosed lung cancer patients are diagnosed with small-cell lung cancer (SCLC). Approximately 39 percent of patients with SCLC are diagnosed with limited-stage disease, meaning the cancer ...

Researchers develop non-invasive technique for predicting patients' response to chemotherapy

November 7, 2012
Researchers have developed a non-invasive way of predicting how much of a cancer-killing drug is absorbed by a tumour. The preliminary study, which will be reported at the 24th EORTC-NCI-AACR Symposium on Molecular Targets ...

Breast cancer: PET and MR predict chemotherapy's ability to prolong life

June 11, 2013
For patients with advanced breast cancer, positron emission tomography (PET) and magnetic resonance (MR) imaging can improve quality of life and survival by providing physicians with information on the effectiveness of chemotherapy ...

PET/MR effective for imaging recurrent prostate cancer

June 11, 2013
When prostate cancer makes a comeback, it becomes increasingly important to have exceptional imaging available to find all possible regions where cancer has spread to other parts of the body, or metastasized, in order to ...

PET scan with [11C]erlotinib may provide noninvasive method to identify TKI-responsive lung tumors

July 5, 2011
A non-invasive PET imaging technique may identify lung cancers that respond best to tyrosine kinase inhibitors (TKIs), allowing doctors to better select patients for personalized therapy, according to research presented at ...

Recommended for you

Researchers create a drug to extend the lives of men with prostate cancer

March 16, 2018
Fifteen years ago, Michael Jung was already an eminent scientist when his wife asked him a question that would change his career, and extend the lives of many men with a particularly lethal form of prostate cancer.

Machine-learning algorithm used to identify specific types of brain tumors

March 15, 2018
An international team of researchers has used methylation fingerprinting data as input to a machine-learning algorithm to identify different types of brain tumors. In their paper published in the journal Nature, the team ...

Higher doses of radiation don't improve survival in prostate cancer

March 15, 2018
A new study shows that higher doses of radiation do not improve survival for many patients with prostate cancer, compared with the standard radiation treatment. The analysis, which included 104 radiation therapy oncology ...

Joint supplement speeds melanoma cell growth

March 15, 2018
Chondroitin sulfate, a dietary supplement taken to strengthen joints, can speed the growth of a type of melanoma, according to experiments conducted in cell culture and mouse models.

Improved capture of cancer cells in blood could help track disease

March 15, 2018
Tumor cells circulating throughout the body in blood vessels have long been feared as harbingers of metastasizing cancer - even though most free-floating cancer cells will not go on to establish a new tumor.

Area surrounding a tumor impacts how breast cancer cells grow

March 14, 2018
Cancer is typically thought of as a tumor that needs to be removed or an area that needs to be treated with radiation or chemotherapy. As a physicist and cancer researcher, Joe Gray, Ph.D., thinks differently.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.