Potential molecular defence against Huntington's disease discovered

August 25, 2013, University of Leicester
This is Dr. Flaviano Giorgini, Reader in Neurogenetics of the University of Leicester's Department of Genetics. Credit: University of Leicester/ Dr Flaviano Giorgini

Leicester geneticists have discovered a potential defence against Huntington's disease – a fatal neurodegenerative disorder which currently has no cure.

The team of University of Leicester researchers identified that glutathione peroxidase activity – a key antioxidant in cells – protects against symptoms of the disease in model organisms.

They hope that the – whose protective ability was initially observed in model organisms such as yeast - can be further developed and eventually used to treat people with the genetically-inherited disease.

The disease affects around 12 people per 100,000.

Their paper, Glutathione peroxidase activity is neuroprotective in models of Huntington's disease, was published in Nature Genetics on 25 August.

A team of experts from the University's Department of Genetics carried out research for more than six years to identify new potential for the disease.

They used model systems, such as baker's yeast, , and cultured mammalian cells to help uncover potential mechanisms underlying disease at the .

They initially screened a genome-wide collection of yeast genes and found several candidates which protected against Huntington's related symptoms in yeast. They then validated their findings in fruit flies and mammalian cells.

They found that glutathione peroxidase activity is robustly protective in these models of Huntington's disease.

Importantly, there are drug-like available that mimic this activity that have already been tested in human clinical trials for other disorders – which potentially means the approach could be used to treat people with the disease.

The team now aim to further validate the observations regarding glutathione peroxidase activity, in order to understand whether this could have therapeutic relevance for Huntington's.

In addition, they have identified many additional genes that are protective - and aim to further explore these to see if there are any additional therapeutic possibilities suggested by their research.

Dr Flaviano Giorgini, Reader in Neurogenetics of the University's Department of Genetics and senior author of the paper, said: "We are taking advantage of genetic approaches in simple model organisms in order to better understand Huntington's disease, with the aim of uncovering novel ways to treat this devastating disorder.

"It appears that glutathione peroxidase activity is a robustly protective antioxidant approach which may have relevance for Huntington's disease."

Dr Robert Mason, Research Associate in the Department of Genetics, and first author of the study, said: "In addition to glutathione peroxidase, this study has identified many genes that improve Huntington's 'symptoms' in yeast. These genes provide valuable information on the underlying mechanisms leading to Huntington's, and further study will likely uncover additional approaches that could be beneficial in treating this terrible disease."

Dr Giorgini stated: "We are excited by the work because it uncovers a potential new route for therapeutics in Huntington's disease. I am also proud that all of this work has been conducted at the Department of Genetics at the University of Leicester."

Explore further: Research points to biomarker that could track Huntington's disease progression

More information: Glutathione peroxidase activity is neuroprotective in models of Huntington's disease, DOI: 10.1038/ng.2732

Related Stories

Research points to biomarker that could track Huntington's disease progression

July 8, 2013
A hallmark of neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's is that by the time symptoms appear, significant brain damage has already occurred—and currently there are no treatments that can ...

Researchers announce Huntington's disease breakthrough

June 2, 2011
(Medical Xpress) -- Medical researchers may have uncovered a novel approach to treat an incurable and ultimately fatal neurodegenerative disease that affects hundreds of thousands of people.

Team makes breakthrough in search for neurodegenerative disease treatments

April 10, 2013
A significant breakthrough has been made by scientists at The University of Manchester towards developing an effective treatment for neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's.

Breakthrough on Huntington's disease

May 23, 2013
Researchers at Lund University have succeeded in preventing very early symptoms of Huntington's disease, depression and anxiety, by deactivating the mutated huntingtin protein in the brains of mice.

Compound may provide drug therapy approach for Huntington's disease

June 23, 2011
UT Southwestern Medical Center researchers have identified compounds that appear to inhibit a signaling pathway in Huntington's disease, a finding that may eventually lead to a potential drug therapy to help slow the progression ...

Recommended for you

New platform poised to be next generation of genetic medicines

July 16, 2018
A City of Hope scientist has discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases, positioning the new tool as the basis for the next generation ...

Overcoming a major barrier to developing liquid biopsies

July 16, 2018
The idea of testing blood or urine to find markers that help diagnose or treat disease holds great promise. But as technology has improved to allow researchers to examine tiny fragments of RNA, one major problem has led to ...

Genetic marker for drug risk in multiple sclerosis offers path toward precision medicine

July 16, 2018
A team of researchers has uncovered a specific gene variant associated with an adverse drug reaction resulting in liver injury in a people with multiple sclerosis (MS). It is the first time researchers have been able to establish ...

Researchers suggest new treatment for rare inherited cancers

July 16, 2018
Studying two rare inherited cancer syndromes, Yale Cancer Center (YCC) scientists have found the cancers are driven by a breakdown in how cells repair their DNA. The discovery, published today in Nature Genetics, suggests ...

AI accurately predicts effects of genetic mutations in biological dark matter

July 16, 2018
A new machine learning framework, dubbed ExPecto, can predict the effects of genetic mutations in the so-called "dark matter" regions of the human genome. ExPecto pinpoints how specific mutations can disrupt the way genes ...

Scientists sharpen the edges of cancer chemotherapy with CRISPR

July 13, 2018
Tackling unsolved problems is a cornerstone of scientific research, propelled by the power and promise of new technologies. Indeed, one of the shiniest tools in the biomedical toolkit these days is the genome editing system ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.