A new role for sodium in the brain

August 20, 2013
brain

Researchers at McGill University have found that sodium – the main chemical component in table salt – is a unique "on/off" switch for a major neurotransmitter receptor in the brain. This receptor, known as the kainate receptor, is fundamental for normal brain function and is implicated in numerous diseases, such as epilepsy and neuropathic pain.

Prof. Derek Bowie and his laboratory in McGill's Department of Pharmacology and Therapeutics, worked with University of Oxford researchers to make the discovery. By offering a different view of how the brain transmits information, their research highlights a new target for drug development. The findings are published in the journal Nature Structural & Molecular Biology.

Balancing kainate receptor activity is the key to maintaining normal . For example, in epilepsy, kainate activity is thought to be excessive. Thus, drugs which would shut down this activity are expected to be beneficial.

"It has been assumed for decades that the "on/off" switch for all brain receptors lies where the neurotransmitter binds," says Prof. Bowie, who also holds a Canada Research Chair in Receptor Pharmacology. "However, we found a completely separate site that binds individual atoms of sodium and controls when kainate receptors get turned on and off."

The sodium switch is unique to kainate receptors, which means that drugs designed to stimulate this switch, should not act elsewhere in the brain. This would be a major step forward, since drugs often affect many locations, in addition to those they were intended to act on, producing negative side-effects as a result. These so called "off-target effects" for drugs represent one of the greatest challenges facing modern medicine.

"Now that we know how to stimulate kainate receptors, we should be able to design drugs to essentially switch them off," says Dr. Bowie.

Dr. Philip Biggin's lab at Oxford University used computer simulations to predict how the presence or absence of sodium would affect the kainate receptor.

Explore further: Neuroscientists discover key protein responsible for controlling nerve cell protection

Related Stories

Recommended for you

Success in the 3-D bioprinting of cartilage

April 28, 2017

A team of researchers at Sahlgrenska Academy has managed to generate cartilage tissue by printing stem cells using a 3-D-bioprinter. The fact that the stem cells survived being printed in this manner is a success in itself. ...

Mouse teeth providing new insights into tissue regeneration

April 27, 2017

Researchers hope to one day use stem cells to heal burns, patch damaged heart tissue, even grow kidneys and other transplantable organs from scratch. This dream edges closer to reality every year, but one of the enduring ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.