A 'rocking' receptor: Crucial brain-signaling molecule requires coordinated motion to turn on

August 7, 2013, Johns Hopkins University School of Medicine
The glutamate-binding segments (blue, yellow) of ionotropic glutamate receptors undergo a "rocking" motion during activation by glutamate (red). (The dotted line provides a point of reference.) Credit: Albert Lau

Johns Hopkins biophysicists have discovered that full activation of a protein ensemble essential for communication between nerve cells in the brain and spinal cord requires a lot of organized back-and-forth motion of some of the ensemble's segments. Their research, they say, may reveal multiple sites within the protein ensemble that could be used as drug targets to normalize its activity in such neurological disorders as epilepsy, schizophrenia, Parkinson's and Alzheimer's disease.

A summary of the results, published online in the journal Neuron on Aug. 7, shows that full activation of so-called ionotropic glutamate receptors is more complex than previously envisioned. In addition to the expected shape changes that occur when the receptor "receives" and clamps down on glutamate , the four segments of the protein ensemble also rock back and forth in relation to each other when fewer than four glutamates are bound.

"We believe that our study is the first to show the and behavior of a prominent neural receptor protein ensemble in a state of partial activation," says Albert Lau, Ph.D., assistant professor of biophysics and at the Johns Hopkins University School of Medicine.

Glutamate receptors reside in the outer envelope of every nerve cell in the brain and spinal cord, Lau notes, and are responsible for changing —the release of glutamate molecules from a neighboring nerve cell—into electrical information, the flow of charged particles into the receiving nerve cell. There would be sharply reduced communication between in our brains if these receptors were disabled, he added, and thought and normal in general would be severely compromised. Malfunctioning receptors, says Lau, have been linked with numerous neurological disorders and are therefore potential targets for drug therapies.

Lau explained that each is a united group of four protein segments that has a pocket for clamping down on glutamate like a Venus fly trap snaring a bug. Below the glutamate-binding segments are four other segments embedded in the cell's outer envelope to form a channel for charged particles to flow through. When no glutamates are bound to the receptor, the channel is closed; full activation of the receptor and full opening of the channel occur when four glutamates are bound, each to a difference pocket.

Previously, Lau says, investigators thought that the level of receptor activation simply corresponded to the degree to which each glutamate-binding segment changed shape during the glutamate-binding process. Using a combination of computer modeling, biophysical "imaging" of molecular structure, biochemical analysis and electrical monitoring of individual cells, the researchers teased apart some of the steps in between zero activation and full activation. They were able to show that the four glutamate-binding segments, in addition to clamping down on glutamate, also rock back and forth in pairs when fewer than four glutamates are bound.

"It isn't clear yet how this rocking motion affects receptor function, but we now know that activation depends on more than how much each glutamate-binding segment clamps down," says Lau. Previous development of drugs targeting the receptor focused on the four glutamate-binding pockets. "Our discovery of this molecular motion could aid the development of drugs by revealing additional drug-binding sites on the receptor," he adds.

Explore further: Neurochemical traffic signals may open new avenues for the treatment of schizophrenia

Related Stories

Neurochemical traffic signals may open new avenues for the treatment of schizophrenia

June 5, 2013
Researchers at Boston University School of Medicine (BUSM) have uncovered important clues about a biochemical pathway in the brain that may one day expand treatment options for schizophrenia. The study, published online in ...

The architects of the brain: Scientists decipher the role of calcium signals

October 26, 2011
German neurobiologists have found that certain receptors for the neurotransmitter glutamate determine the architecture of nerve cells in the developing brain. Individual receptor variants lead to especially long and branched ...

Targeting neurotransmitter may help treat gastrointestinal conditions

December 4, 2012
Selective targeting of the neurotransmitter that differentially affects brain cells that control the two distinct functions of the pancreas may allow for new medication therapies for conditions like diabetes, dyspepsia and ...

Rewriting a receptor's role: Synaptic molecule works differently than thought

February 19, 2013
(Medical Xpress)—In a pair of new papers, researchers at the University of California, San Diego School of Medicine and the Royal Netherlands Academy of Arts and Sciences upend a long-held view about the basic functioning ...

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.