Scientists transform non-beating human cells into heart-muscle cells

August 22, 2013
This is a 3D image of a reprogrammed human cardiomyocyte-like cell derived from a human fibroblast, stained with a marker of the sarcomere, the beating unit of a muscle cell. Credit: Stem Cell Reports, Fu et al.

In the aftermath of a heart attack, cells within the region most affected shut down. They stop beating. And they become entombed in scar tissue. But now, scientists at the Gladstone Institutes have demonstrated that this damage need not be permanent—by finding a way to transform the class of cells that form human scar tissue into those that closely resemble beating heart cells.

Last year, these scientists transformed scar-forming heart cells, part of a class of cells known as fibroblasts, into -muscle cells in live mice. And in the latest issue of Stem Cell Reports, researchers in the laboratory of Gladstone Cardiovascular and Stem Cell Research Director Deepak Srivastava, MD, reveal that they have done the same to in a .

"Fibroblasts make up about 50% of all cells in the heart and therefore represent a vast pool of cells that could one day be harnessed and reprogrammed to create new muscle," said Dr. Srivastava, who is also a professor at the University of California, San Francisco, with which Gladstone is affiliated. "Our findings here serve as a that human fibroblasts can be reprogrammed successfully into beating heart cells."

In 2012, Dr. Srivastava and his team reported in the journal Nature that fibroblasts could be reprogrammed into beating heart cells by injecting just three genes, together known as GMT, into the hearts of live mice that had been damaged by a heart attack. They reasoned that the same three genes could have the same effect on human cells. But initial experiments on human fibroblasts from three sources— cells, and neonatal —revealed that the GMT combination alone was not sufficient.

The video will load shortly.
This is a 3D image of a heart muscle cell that has been derived from a fibroblast via a process called direct reprogramming. Direct reprogramming allows one cell type to transform into another without first transforming into a stem cell. Credit: Scott Metzler/Gladstone Institutes

"When we injected GMT into each of the three types of human fibroblasts, nothing happened—they never transformed—so we went back to the drawing board to look for additional genes that would help initiate the transformation," said Gladstone Staff Scientist Ji-dong Fu, PhD, the study's lead author. "We narrowed our search to just 16 potential genes, which we then screened alongside GMT, in the hopes that we could find the right combination."

The research team began by injecting all candidate genes into the human fibroblasts. They then systematically removed each one to see which were necessary for reprogramming, and which were dispensable. In the end, the team found that injecting a cocktail of five genes—the 3-gene GMT mix plus the genes ESRRG and MESP1—were sufficient to reprogram the fibroblasts into heart-like cells. They then found that with the addition of two more genes, called MYOCD and ZFPM2, the transformation was even more complete. To help things along, the team initiated a chemical reaction known as the TGF-ß signaling pathway during the early stages of reprogramming, which further improved reprogramming success rates.

"While almost all the cells in our study exhibited at least a partial transformation, about 20% of them were capable of transmitting electrical signals—a key feature of beating ," said Dr. Fu. "Clearly, there are some yet-to-be-determined barriers preventing a more complete transformation for many of the cells. For example, success rates might be improved by transforming the fibroblasts within living hearts rather than in a dish—something we also observed during our initial experiments in mice."

The immediate next steps are to test the five-gene cocktail in hearts of larger mammals, such as pigs. Eventually, the team hopes that a combination of small, drug-like molecules could be developed to replace the cocktail, offering a safer and easier method of delivery.

"With more than five million heart attack survivors in the United States, who have hearts that are no longer able to beat at full capacity, our findings—along with recently published findings from our colleagues—come at a critical time," added Dr. Srivastava. "We've now laid a solid foundation for developing a way to reverse the damage—something previously thought impossible—and changing the way that doctors may treat heart attacks in the future."

Explore further: In breakthrough study damaged mouse hearts regenerated by transforming scar tissue into beating heart muscle

More information: Stem Cell Reports, Fu et al.: "Direct Reprogramming of Human Fibroblasts Toward a Cardiomyocyte-Like State." dx.doi.org/10.1016/j.stemcr.2013.07.005

Related Stories

In breakthrough study damaged mouse hearts regenerated by transforming scar tissue into beating heart muscle

April 18, 2012
Scientists at the Gladstone Institutes today are announcing a research breakthrough in mice that one day may help doctors restore hearts damaged by heart attacks—by converting scar-forming cardiac cells into beating ...

Fibroblasts reprogrammed into functioning heart cells in mice

April 23, 2012
(HealthDay) -- Cells that normally form scar tissue after a heart attack can be reprogrammed into functional heart cells in mice, according to an experimental study published online April 18 in Nature.

Transforming scar tissue into beating hearts: The next instalment

April 1, 2012
The latest research developments to reprogram scar tissue resulting from myocardial infarction (MI) into viable heart muscle cells, were presented at the Frontiers in CardioVascular Biology (FCVB) 2012 meeting, held 30 March ...

Gene therapy reprograms scar tissue in damaged hearts into healthy heart muscle

January 4, 2013
A cocktail of three specific genes can reprogram cells in the scars caused by heart attacks into functioning muscle cells, and the addition of a gene that stimulates the growth of blood vessels enhances that effect, said ...

Recommended for you

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.